1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
use core::{char, cmp, fmt::Debug, slice};
use alloc::vec::Vec;
use crate::unicode;
// This module contains an *internal* implementation of interval sets.
//
// The primary invariant that interval sets guards is canonical ordering. That
// is, every interval set contains an ordered sequence of intervals where
// no two intervals are overlapping or adjacent. While this invariant is
// occasionally broken within the implementation, it should be impossible for
// callers to observe it.
//
// Since case folding (as implemented below) breaks that invariant, we roll
// that into this API even though it is a little out of place in an otherwise
// generic interval set. (Hence the reason why the `unicode` module is imported
// here.)
//
// Some of the implementation complexity here is a result of me wanting to
// preserve the sequential representation without using additional memory.
// In many cases, we do use linear extra memory, but it is at most 2x and it
// is amortized. If we relaxed the memory requirements, this implementation
// could become much simpler. The extra memory is honestly probably OK, but
// character classes (especially of the Unicode variety) can become quite
// large, and it would be nice to keep regex compilation snappy even in debug
// builds. (In the past, I have been careless with this area of code and it has
// caused slow regex compilations in debug mode, so this isn't entirely
// unwarranted.)
//
// Tests on this are relegated to the public API of HIR in src/hir.rs.
#[derive(Clone, Debug)]
pub struct IntervalSet<I> {
/// A sorted set of non-overlapping ranges.
ranges: Vec<I>,
/// While not required at all for correctness, we keep track of whether an
/// interval set has been case folded or not. This helps us avoid doing
/// redundant work if, for example, a set has already been cased folded.
/// And note that whether a set is folded or not is preserved through
/// all of the pairwise set operations. That is, if both interval sets
/// have been case folded, then any of difference, union, intersection or
/// symmetric difference all produce a case folded set.
///
/// Note that when this is true, it *must* be the case that the set is case
/// folded. But when it's false, the set *may* be case folded. In other
/// words, we only set this to true when we know it to be case, but we're
/// okay with it being false if it would otherwise be costly to determine
/// whether it should be true. This means code cannot assume that a false
/// value necessarily indicates that the set is not case folded.
///
/// Bottom line: this is a performance optimization.
folded: bool,
}
impl<I: Interval> Eq for IntervalSet<I> {}
// We implement PartialEq manually so that we don't consider the set's internal
// 'folded' property to be part of its identity. The 'folded' property is
// strictly an optimization.
impl<I: Interval> PartialEq for IntervalSet<I> {
fn eq(&self, other: &IntervalSet<I>) -> bool {
self.ranges.eq(&other.ranges)
}
}
impl<I: Interval> IntervalSet<I> {
/// Create a new set from a sequence of intervals. Each interval is
/// specified as a pair of bounds, where both bounds are inclusive.
///
/// The given ranges do not need to be in any specific order, and ranges
/// may overlap.
pub fn new<T: IntoIterator<Item = I>>(intervals: T) -> IntervalSet<I> {
let ranges: Vec<I> = intervals.into_iter().collect();
// An empty set is case folded.
let folded = ranges.is_empty();
let mut set = IntervalSet { ranges, folded };
set.canonicalize();
set
}
/// Add a new interval to this set.
pub fn push(&mut self, interval: I) {
// TODO: This could be faster. e.g., Push the interval such that
// it preserves canonicalization.
self.ranges.push(interval);
self.canonicalize();
// We don't know whether the new interval added here is considered
// case folded, so we conservatively assume that the entire set is
// no longer case folded if it was previously.
self.folded = false;
}
/// Return an iterator over all intervals in this set.
///
/// The iterator yields intervals in ascending order.
pub fn iter(&self) -> IntervalSetIter<'_, I> {
IntervalSetIter(self.ranges.iter())
}
/// Return an immutable slice of intervals in this set.
///
/// The sequence returned is in canonical ordering.
pub fn intervals(&self) -> &[I] {
&self.ranges
}
/// Expand this interval set such that it contains all case folded
/// characters. For example, if this class consists of the range `a-z`,
/// then applying case folding will result in the class containing both the
/// ranges `a-z` and `A-Z`.
///
/// This returns an error if the necessary case mapping data is not
/// available.
pub fn case_fold_simple(&mut self) -> Result<(), unicode::CaseFoldError> {
if self.folded {
return Ok(());
}
let len = self.ranges.len();
for i in 0..len {
let range = self.ranges[i];
if let Err(err) = range.case_fold_simple(&mut self.ranges) {
self.canonicalize();
return Err(err);
}
}
self.canonicalize();
self.folded = true;
Ok(())
}
/// Union this set with the given set, in place.
pub fn union(&mut self, other: &IntervalSet<I>) {
if other.ranges.is_empty() || self.ranges == other.ranges {
return;
}
// This could almost certainly be done more efficiently.
self.ranges.extend(&other.ranges);
self.canonicalize();
self.folded = self.folded && other.folded;
}
/// Intersect this set with the given set, in place.
pub fn intersect(&mut self, other: &IntervalSet<I>) {
if self.ranges.is_empty() {
return;
}
if other.ranges.is_empty() {
self.ranges.clear();
// An empty set is case folded.
self.folded = true;
return;
}
// There should be a way to do this in-place with constant memory,
// but I couldn't figure out a simple way to do it. So just append
// the intersection to the end of this range, and then drain it before
// we're done.
let drain_end = self.ranges.len();
let mut ita = 0..drain_end;
let mut itb = 0..other.ranges.len();
let mut a = ita.next().unwrap();
let mut b = itb.next().unwrap();
loop {
if let Some(ab) = self.ranges[a].intersect(&other.ranges[b]) {
self.ranges.push(ab);
}
let (it, aorb) =
if self.ranges[a].upper() < other.ranges[b].upper() {
(&mut ita, &mut a)
} else {
(&mut itb, &mut b)
};
match it.next() {
Some(v) => *aorb = v,
None => break,
}
}
self.ranges.drain(..drain_end);
self.folded = self.folded && other.folded;
}
/// Subtract the given set from this set, in place.
pub fn difference(&mut self, other: &IntervalSet<I>) {
if self.ranges.is_empty() || other.ranges.is_empty() {
return;
}
// This algorithm is (to me) surprisingly complex. A search of the
// interwebs indicate that this is a potentially interesting problem.
// Folks seem to suggest interval or segment trees, but I'd like to
// avoid the overhead (both runtime and conceptual) of that.
//
// The following is basically my Shitty First Draft. Therefore, in
// order to grok it, you probably need to read each line carefully.
// Simplifications are most welcome!
//
// Remember, we can assume the canonical format invariant here, which
// says that all ranges are sorted, not overlapping and not adjacent in
// each class.
let drain_end = self.ranges.len();
let (mut a, mut b) = (0, 0);
'LOOP: while a < drain_end && b < other.ranges.len() {
// Basically, the easy cases are when neither range overlaps with
// each other. If the `b` range is less than our current `a`
// range, then we can skip it and move on.
if other.ranges[b].upper() < self.ranges[a].lower() {
b += 1;
continue;
}
// ... similarly for the `a` range. If it's less than the smallest
// `b` range, then we can add it as-is.
if self.ranges[a].upper() < other.ranges[b].lower() {
let range = self.ranges[a];
self.ranges.push(range);
a += 1;
continue;
}
// Otherwise, we have overlapping ranges.
assert!(!self.ranges[a].is_intersection_empty(&other.ranges[b]));
// This part is tricky and was non-obvious to me without looking
// at explicit examples (see the tests). The trickiness stems from
// two things: 1) subtracting a range from another range could
// yield two ranges and 2) after subtracting a range, it's possible
// that future ranges can have an impact. The loop below advances
// the `b` ranges until they can't possible impact the current
// range.
//
// For example, if our `a` range is `a-t` and our next three `b`
// ranges are `a-c`, `g-i`, `r-t` and `x-z`, then we need to apply
// subtraction three times before moving on to the next `a` range.
let mut range = self.ranges[a];
while b < other.ranges.len()
&& !range.is_intersection_empty(&other.ranges[b])
{
let old_range = range;
range = match range.difference(&other.ranges[b]) {
(None, None) => {
// We lost the entire range, so move on to the next
// without adding this one.
a += 1;
continue 'LOOP;
}
(Some(range1), None) | (None, Some(range1)) => range1,
(Some(range1), Some(range2)) => {
self.ranges.push(range1);
range2
}
};
// It's possible that the `b` range has more to contribute
// here. In particular, if it is greater than the original
// range, then it might impact the next `a` range *and* it
// has impacted the current `a` range as much as possible,
// so we can quit. We don't bump `b` so that the next `a`
// range can apply it.
if other.ranges[b].upper() > old_range.upper() {
break;
}
// Otherwise, the next `b` range might apply to the current
// `a` range.
b += 1;
}
self.ranges.push(range);
a += 1;
}
while a < drain_end {
let range = self.ranges[a];
self.ranges.push(range);
a += 1;
}
self.ranges.drain(..drain_end);
self.folded = self.folded && other.folded;
}
/// Compute the symmetric difference of the two sets, in place.
///
/// This computes the symmetric difference of two interval sets. This
/// removes all elements in this set that are also in the given set,
/// but also adds all elements from the given set that aren't in this
/// set. That is, the set will contain all elements in either set,
/// but will not contain any elements that are in both sets.
pub fn symmetric_difference(&mut self, other: &IntervalSet<I>) {
// TODO(burntsushi): Fix this so that it amortizes allocation.
let mut intersection = self.clone();
intersection.intersect(other);
self.union(other);
self.difference(&intersection);
}
/// Negate this interval set.
///
/// For all `x` where `x` is any element, if `x` was in this set, then it
/// will not be in this set after negation.
pub fn negate(&mut self) {
if self.ranges.is_empty() {
let (min, max) = (I::Bound::min_value(), I::Bound::max_value());
self.ranges.push(I::create(min, max));
// The set containing everything must case folded.
self.folded = true;
return;
}
// There should be a way to do this in-place with constant memory,
// but I couldn't figure out a simple way to do it. So just append
// the negation to the end of this range, and then drain it before
// we're done.
let drain_end = self.ranges.len();
// We do checked arithmetic below because of the canonical ordering
// invariant.
if self.ranges[0].lower() > I::Bound::min_value() {
let upper = self.ranges[0].lower().decrement();
self.ranges.push(I::create(I::Bound::min_value(), upper));
}
for i in 1..drain_end {
let lower = self.ranges[i - 1].upper().increment();
let upper = self.ranges[i].lower().decrement();
self.ranges.push(I::create(lower, upper));
}
if self.ranges[drain_end - 1].upper() < I::Bound::max_value() {
let lower = self.ranges[drain_end - 1].upper().increment();
self.ranges.push(I::create(lower, I::Bound::max_value()));
}
self.ranges.drain(..drain_end);
// We don't need to update whether this set is folded or not, because
// it is conservatively preserved through negation. Namely, if a set
// is not folded, then it is possible that its negation is folded, for
// example, [^☃]. But we're fine with assuming that the set is not
// folded in that case. (`folded` permits false negatives but not false
// positives.)
//
// But what about when a set is folded, is its negation also
// necessarily folded? Yes. Because if a set is folded, then for every
// character in the set, it necessarily included its equivalence class
// of case folded characters. Negating it in turn means that all
// equivalence classes in the set are negated, and any equivalence
// class that was previously not in the set is now entirely in the set.
}
/// Converts this set into a canonical ordering.
fn canonicalize(&mut self) {
if self.is_canonical() {
return;
}
self.ranges.sort();
assert!(!self.ranges.is_empty());
// Is there a way to do this in-place with constant memory? I couldn't
// figure out a way to do it. So just append the canonicalization to
// the end of this range, and then drain it before we're done.
let drain_end = self.ranges.len();
for oldi in 0..drain_end {
// If we've added at least one new range, then check if we can
// merge this range in the previously added range.
if self.ranges.len() > drain_end {
let (last, rest) = self.ranges.split_last_mut().unwrap();
if let Some(union) = last.union(&rest[oldi]) {
*last = union;
continue;
}
}
let range = self.ranges[oldi];
self.ranges.push(range);
}
self.ranges.drain(..drain_end);
}
/// Returns true if and only if this class is in a canonical ordering.
fn is_canonical(&self) -> bool {
for pair in self.ranges.windows(2) {
if pair[0] >= pair[1] {
return false;
}
if pair[0].is_contiguous(&pair[1]) {
return false;
}
}
true
}
}
/// An iterator over intervals.
#[derive(Debug)]
pub struct IntervalSetIter<'a, I>(slice::Iter<'a, I>);
impl<'a, I> Iterator for IntervalSetIter<'a, I> {
type Item = &'a I;
fn next(&mut self) -> Option<&'a I> {
self.0.next()
}
}
pub trait Interval:
Clone + Copy + Debug + Default + Eq + PartialEq + PartialOrd + Ord
{
type Bound: Bound;
fn lower(&self) -> Self::Bound;
fn upper(&self) -> Self::Bound;
fn set_lower(&mut self, bound: Self::Bound);
fn set_upper(&mut self, bound: Self::Bound);
fn case_fold_simple(
&self,
intervals: &mut Vec<Self>,
) -> Result<(), unicode::CaseFoldError>;
/// Create a new interval.
fn create(lower: Self::Bound, upper: Self::Bound) -> Self {
let mut int = Self::default();
if lower <= upper {
int.set_lower(lower);
int.set_upper(upper);
} else {
int.set_lower(upper);
int.set_upper(lower);
}
int
}
/// Union the given overlapping range into this range.
///
/// If the two ranges aren't contiguous, then this returns `None`.
fn union(&self, other: &Self) -> Option<Self> {
if !self.is_contiguous(other) {
return None;
}
let lower = cmp::min(self.lower(), other.lower());
let upper = cmp::max(self.upper(), other.upper());
Some(Self::create(lower, upper))
}
/// Intersect this range with the given range and return the result.
///
/// If the intersection is empty, then this returns `None`.
fn intersect(&self, other: &Self) -> Option<Self> {
let lower = cmp::max(self.lower(), other.lower());
let upper = cmp::min(self.upper(), other.upper());
if lower <= upper {
Some(Self::create(lower, upper))
} else {
None
}
}
/// Subtract the given range from this range and return the resulting
/// ranges.
///
/// If subtraction would result in an empty range, then no ranges are
/// returned.
fn difference(&self, other: &Self) -> (Option<Self>, Option<Self>) {
if self.is_subset(other) {
return (None, None);
}
if self.is_intersection_empty(other) {
return (Some(self.clone()), None);
}
let add_lower = other.lower() > self.lower();
let add_upper = other.upper() < self.upper();
// We know this because !self.is_subset(other) and the ranges have
// a non-empty intersection.
assert!(add_lower || add_upper);
let mut ret = (None, None);
if add_lower {
let upper = other.lower().decrement();
ret.0 = Some(Self::create(self.lower(), upper));
}
if add_upper {
let lower = other.upper().increment();
let range = Self::create(lower, self.upper());
if ret.0.is_none() {
ret.0 = Some(range);
} else {
ret.1 = Some(range);
}
}
ret
}
/// Compute the symmetric difference the given range from this range. This
/// returns the union of the two ranges minus its intersection.
fn symmetric_difference(
&self,
other: &Self,
) -> (Option<Self>, Option<Self>) {
let union = match self.union(other) {
None => return (Some(self.clone()), Some(other.clone())),
Some(union) => union,
};
let intersection = match self.intersect(other) {
None => return (Some(self.clone()), Some(other.clone())),
Some(intersection) => intersection,
};
union.difference(&intersection)
}
/// Returns true if and only if the two ranges are contiguous. Two ranges
/// are contiguous if and only if the ranges are either overlapping or
/// adjacent.
fn is_contiguous(&self, other: &Self) -> bool {
let lower1 = self.lower().as_u32();
let upper1 = self.upper().as_u32();
let lower2 = other.lower().as_u32();
let upper2 = other.upper().as_u32();
cmp::max(lower1, lower2) <= cmp::min(upper1, upper2).saturating_add(1)
}
/// Returns true if and only if the intersection of this range and the
/// other range is empty.
fn is_intersection_empty(&self, other: &Self) -> bool {
let (lower1, upper1) = (self.lower(), self.upper());
let (lower2, upper2) = (other.lower(), other.upper());
cmp::max(lower1, lower2) > cmp::min(upper1, upper2)
}
/// Returns true if and only if this range is a subset of the other range.
fn is_subset(&self, other: &Self) -> bool {
let (lower1, upper1) = (self.lower(), self.upper());
let (lower2, upper2) = (other.lower(), other.upper());
(lower2 <= lower1 && lower1 <= upper2)
&& (lower2 <= upper1 && upper1 <= upper2)
}
}
pub trait Bound:
Copy + Clone + Debug + Eq + PartialEq + PartialOrd + Ord
{
fn min_value() -> Self;
fn max_value() -> Self;
fn as_u32(self) -> u32;
fn increment(self) -> Self;
fn decrement(self) -> Self;
}
impl Bound for u8 {
fn min_value() -> Self {
u8::MIN
}
fn max_value() -> Self {
u8::MAX
}
fn as_u32(self) -> u32 {
u32::from(self)
}
fn increment(self) -> Self {
self.checked_add(1).unwrap()
}
fn decrement(self) -> Self {
self.checked_sub(1).unwrap()
}
}
impl Bound for char {
fn min_value() -> Self {
'\x00'
}
fn max_value() -> Self {
'\u{10FFFF}'
}
fn as_u32(self) -> u32 {
u32::from(self)
}
fn increment(self) -> Self {
match self {
'\u{D7FF}' => '\u{E000}',
c => char::from_u32(u32::from(c).checked_add(1).unwrap()).unwrap(),
}
}
fn decrement(self) -> Self {
match self {
'\u{E000}' => '\u{D7FF}',
c => char::from_u32(u32::from(c).checked_sub(1).unwrap()).unwrap(),
}
}
}
// Tests for interval sets are written in src/hir.rs against the public API.