1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
use crate::spirv;
use super::DecodeError as Error;
use std::convert::TryInto;
use std::result;
use std::str;
pub type Result<T> = result::Result<T, Error>;
const WORD_NUM_BYTES: usize = 4;
/// The SPIR-V binary decoder.
///
/// Takes in a vector of bytes, and serves requests for raw SPIR-V words
/// or values of a specific SPIR-V enum type. Successful decoding will
/// surely consume the number of words decoded, while unsuccessful decoding
/// may consume any number of bytes.
///
/// TODO: The decoder should not conume words if an error occurs.
///
/// Different from the [`Parser`](struct.Parser.html),
/// this decoder is low-level; it has no knowledge of the SPIR-V grammar.
/// Given a vector of bytes, it solely responds to word decoding requests
/// via method calls: both raw words requests and decoding the raw words
/// into a value of a specific SPIR-V enum type.
///
/// It also provides a limit mechanism. Users can set a limit, and then
/// requesting words. If that limit is reached before the end of the
/// stream, [`State::LimitReached`](enum.ParseState.html) will be
/// returned.
///
/// # Errors
///
/// For its methods, there can be the following errors:
///
/// * `DecodeError::LimitReached(offset)` if the most recent limit has reached.
/// * `DecodeError::StreamExpected(offset)` if more bytes are needed to decode
/// the next word.
/// * `DecodeError::<spirv-enum>Unknown(offset, value)` if failed to decode the
/// next word as the given `<spirv-enum>`.
///
/// All errors contain the byte offset of the word failed decoding.
///
/// # Examples
///
/// ```
/// use rspirv::binary::{Decoder, DecodeError};
/// use spirv::SourceLanguage;
///
/// fn main() {
/// let v = vec![0x12, 0x34, 0x56, 0x78,
/// 0x90, 0xab, 0xcd, 0xef,
/// 0x02, 0x00, 0x00, 0x00];
/// let mut d = Decoder::new(&v);
///
/// assert_eq!(Ok(0x78563412), d.word());
/// assert_eq!(Ok(0xefcdab90), d.word());
/// assert_eq!(Ok(SourceLanguage::GLSL), d.source_language());
///
/// assert_eq!(Err(DecodeError::StreamExpected(12)), d.word());
/// }
/// ```
pub struct Decoder<'a> {
/// Raw bytes to decode
bytes: &'a [u8],
/// Offset for next byte to decode
offset: usize,
/// Remaining limit of number of words before error
limit: Option<usize>,
}
impl<'a> Decoder<'a> {
/// Creates a new `Decoder` instance.
pub fn new(bytes: &'a [u8]) -> Decoder<'a> {
Decoder {
bytes,
offset: 0,
limit: None,
}
}
/// Returns the offset of the byte to decode next.
pub fn offset(&self) -> usize {
self.offset
}
/// Decodes and returns the next raw SPIR-V word.
pub fn word(&mut self) -> Result<spirv::Word> {
if self.has_limit() {
if self.limit_reached() {
return Err(Error::LimitReached(self.offset));
} else {
*self.limit.as_mut().unwrap() -= 1
}
}
if self.offset >= self.bytes.len() || self.offset + WORD_NUM_BYTES > self.bytes.len() {
Err(Error::StreamExpected(self.offset))
} else {
self.offset += WORD_NUM_BYTES;
Ok(spirv::Word::from_le_bytes(
self.bytes[self.offset - 4..self.offset].try_into().unwrap(),
))
}
}
/// Decodes and returns the next `n` raw SPIR-V words.
pub fn words(&mut self, n: usize) -> Result<Vec<spirv::Word>> {
let mut words = Vec::new();
for _ in 0..n {
words.push(self.word()?);
}
Ok(words)
}
}
impl<'a> Decoder<'a> {
/// Sets the limit to `num_words` words.
///
/// The decoder will return [`State::LimitReached`](enum.ParseState.html)
/// after `num_words` words have been requested, if having not consumed
/// the whole stream.
pub fn set_limit(&mut self, num_words: usize) {
self.limit = Some(num_words)
}
/// Clear the previously set limit (if any).
pub fn clear_limit(&mut self) {
self.limit = None
}
/// Returns true if a limit has been set on this decoder.
pub fn has_limit(&self) -> bool {
self.limit.is_some()
}
/// Returns true if the previously set limit has been reached.
///
/// This will always return false if no limit has been ever set.
pub fn limit_reached(&self) -> bool {
if let Some(left) = self.limit {
left == 0
} else {
false
}
}
}
impl<'a> Decoder<'a> {
/// Decodes and returns the next SPIR-V word as an id.
pub fn id(&mut self) -> Result<spirv::Word> {
self.word()
}
/// Decodes and returns a literal string.
///
/// This method will consume as many words as necessary until finding a
/// null character (`\0`), or reaching the limit or end of the stream
/// and erroring out.
pub fn string(&mut self) -> Result<String> {
// If we have a limit, then don't search further than we need to.
let slice = match self.limit {
Some(limit) => &self.bytes[self.offset..(self.offset + limit * WORD_NUM_BYTES)],
None => &self.bytes[self.offset..],
};
// Find the null terminator.
let first_null_byte =
slice
.iter()
.position(|&c| c == 0)
.ok_or_else(|| match self.limit {
Some(_) => Error::LimitReached(self.offset + slice.len()),
None => Error::StreamExpected(self.offset),
})?;
// Validate the string is utf8.
let result = str::from_utf8(&slice[..first_null_byte])
.map_err(|e| Error::DecodeStringFailed(self.offset, format!("{}", e)))?;
// Round up consumed words to include null byte(s).
let consumed_words = (first_null_byte / WORD_NUM_BYTES) + 1;
self.offset += consumed_words * WORD_NUM_BYTES;
if let Some(ref mut limit) = self.limit {
// This is guaranteed to be enough due to the slice limit above.
*limit -= consumed_words;
}
Ok(result.to_string())
}
/// Decodes and returns the next SPIR-V word as a 32-bit
/// literal integer.
pub fn int32(&mut self) -> Result<u32> {
self.word()
}
/// Decodes and returns the next two SPIR-V words as a 64-bit
/// literal integer.
pub fn int64(&mut self) -> Result<u64> {
let low = u64::from(self.word()?);
let high = u64::from(self.word()?);
Ok((high << 32) | low)
}
/// Decodes and returns the next SPIR-V word as a 32-bit
/// literal floating point number.
pub fn float32(&mut self) -> Result<f32> {
let val = self.word()?;
Ok(f32::from_bits(val))
}
/// Decodes and returns the next two SPIR-V words as a 64-bit
/// literal floating point number.
pub fn float64(&mut self) -> Result<f64> {
let low = u64::from(self.word()?);
let high = u64::from(self.word()?);
let val = (high << 32) | low;
Ok(f64::from_bits(val))
}
/// Decodes and returns the next SPIR-V word as a 32-bit
/// extended-instruction-set number.
pub fn ext_inst_integer(&mut self) -> Result<u32> {
self.word()
}
}
include!("autogen_decode_operand.rs");
#[cfg(test)]
mod tests {
use crate::spirv;
use super::Decoder;
use crate::binary::DecodeError as Error;
#[test]
fn test_decoding_word_from_one_bytes() {
let b = vec![1];
let mut d = Decoder::new(&b);
assert_eq!(Err(Error::StreamExpected(0)), d.word());
}
#[test]
fn test_decoding_word_from_two_bytes() {
let b = vec![1, 2];
let mut d = Decoder::new(&b);
assert_eq!(Err(Error::StreamExpected(0)), d.word());
}
#[test]
fn test_decoding_word_from_three_bytes() {
let b = vec![1, 2, 3];
let mut d = Decoder::new(&b);
assert_eq!(Err(Error::StreamExpected(0)), d.word());
}
#[test]
fn test_decoding_word_from_four_bytes() {
let b = vec![0x12, 0x34, 0x56, 0x78];
let mut d = Decoder::new(&b);
assert_eq!(Ok(0x78563412), d.word());
}
#[test]
#[rustfmt::skip]
fn test_decoding_words() {
let b = vec![0x12, 0x34, 0x56, 0x78,
0x90, 0xab, 0xcd, 0xef,
0x01, 0x23, 0x45, 0x67,
0x89, 0xfe, 0xdc, 0xba];
let mut d = Decoder::new(&b);
assert_eq!(Ok(vec![0x78563412, 0xefcdab90]), d.words(2));
assert_eq!(Ok(vec![0x67452301]), d.words(1));
assert_eq!(Ok(vec![0xbadcfe89]), d.words(1));
}
#[test]
fn test_decoding_string() {
{
let b = vec![0x00, 0x00, 0x00, 0x00];
let mut d = Decoder::new(&b);
assert_eq!(Ok(String::new()), d.string());
}
{
let b = b"ok".to_vec();
let mut d = Decoder::new(&b);
assert_eq!(Err(Error::StreamExpected(0)), d.string());
}
{
let b = b"ok\0\0".to_vec();
let mut d = Decoder::new(&b);
assert_eq!(Ok("ok".to_string()), d.string());
}
{
let b = b"ok\0\0rust\0\0\0\0rocks\0\0\0".to_vec();
let mut d = Decoder::new(&b);
assert_eq!(Ok("ok".to_string()), d.string());
assert_eq!(Ok("rust".to_string()), d.string());
assert_eq!(Ok("rocks".to_string()), d.string());
}
{
let b = b"I..don't know..\0".to_vec();
let mut d = Decoder::new(&b);
assert_eq!(Ok("I..don't know..".to_string()), d.string());
}
}
#[test]
fn test_decoding_source_language() {
let b = vec![0x02, 0x00, 0x00, 0x00];
let mut d = Decoder::new(&b);
assert_eq!(Ok(spirv::SourceLanguage::GLSL), d.source_language());
}
#[test]
fn test_decoding_unknown_execution_model() {
let b = vec![0xef, 0xbe, 0xad, 0xde];
let mut d = Decoder::new(&b);
assert_eq!(
Err(Error::ExecutionModelUnknown(0, 0xdeadbeef)),
d.execution_model()
);
}
#[test]
#[rustfmt::skip]
fn test_offset() {
let b = vec![0x12, 0x34, 0x56, 0x78,
0x90, 0xab, 0xcd, 0xef,
0x01, 0x23, 0x45, 0x67,
0x89, 0xfe, 0xdc, 0xba,
0x01, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff];
let mut d = Decoder::new(&b);
assert_eq!(0, d.offset());
assert!(d.words(1).is_ok());
assert_eq!(4, d.offset());
assert!(d.words(2).is_ok());
assert_eq!(12, d.offset());
assert!(d.words(1).is_ok());
assert_eq!(16, d.offset());
assert!(d.source_language().is_ok());
assert_eq!(20, d.offset());
assert!(d.execution_model().is_err());
assert_eq!(24, d.offset());
}
#[test]
fn test_decoding_after_errors() {
let b = vec![0x12, 0x34, 0x56, 0x78];
let mut d = Decoder::new(&b);
assert_eq!(Ok(0x78563412), d.word());
assert_eq!(Err(Error::StreamExpected(4)), d.word());
assert_eq!(Err(Error::StreamExpected(4)), d.word());
assert_eq!(Err(Error::StreamExpected(4)), d.word());
}
#[test]
fn test_limit() {
let mut v = vec![];
for _ in 0..12 {
v.push(0xff);
}
let mut d = Decoder::new(&v);
assert!(!d.has_limit());
assert!(!d.limit_reached());
d.set_limit(4);
assert!(d.has_limit());
assert!(!d.limit_reached());
d.clear_limit();
assert!(!d.has_limit());
assert!(!d.limit_reached());
d.set_limit(2);
assert!(d.has_limit());
assert!(!d.limit_reached());
assert_eq!(Ok(0xffffffff), d.word());
assert!(d.has_limit());
assert!(!d.limit_reached());
assert_eq!(Ok(0xffffffff), d.word());
assert!(d.has_limit());
assert!(d.limit_reached());
assert_eq!(Err(Error::LimitReached(8)), d.word());
assert!(d.has_limit());
assert!(d.limit_reached());
assert_eq!(Err(Error::LimitReached(8)), d.word());
assert!(d.has_limit());
assert!(d.limit_reached());
d.clear_limit();
assert_eq!(Ok(0xffffffff), d.word());
assert!(!d.has_limit());
assert!(!d.limit_reached());
d.set_limit(0);
assert_eq!(Err(Error::LimitReached(12)), d.word());
assert!(d.has_limit());
assert!(d.limit_reached());
d.clear_limit();
assert_eq!(Err(Error::StreamExpected(12)), d.word());
}
#[test]
fn test_decode_int64() {
let b = [0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef];
let mut d = Decoder::new(&b);
assert_eq!(Ok(0xefcdab9078563412), d.int64());
}
#[test]
fn test_decode_float32() {
let b = [0x14, 0xAE, 0x29, 0x42];
let mut d = Decoder::new(&b);
assert_eq!(Ok(42.42), d.float32());
let b = [0xA4, 0x70, 0x45, 0xC1];
let mut d = Decoder::new(&b);
assert_eq!(Ok(-12.34), d.float32());
}
#[test]
fn test_decode_float64() {
let b = [0xF6, 0x28, 0x5C, 0x8F, 0xC2, 0x35, 0x45, 0x40];
let mut d = Decoder::new(&b);
assert_eq!(Ok(42.42), d.float64());
let b = [0xAE, 0x47, 0xE1, 0x7A, 0x14, 0xAE, 0x28, 0xC0];
let mut d = Decoder::new(&b);
assert_eq!(Ok(-12.34), d.float64());
}
}