1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
//! This file is responsible for translation from rustc tys (`TyAndLayout`) to spir-v types. It's
//! surprisingly difficult.
use crate::attr::{AggregatedSpirvAttributes, IntrinsicType};
use crate::codegen_cx::CodegenCx;
use crate::spirv_type::SpirvType;
use rspirv::spirv::{StorageClass, Word};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::ErrorGuaranteed;
use rustc_index::Idx;
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{FnAbiOf, LayoutOf, TyAndLayout};
use rustc_middle::ty::GenericArgsRef;
use rustc_middle::ty::{
self, Const, FloatTy, GeneratorArgs, IntTy, ParamEnv, PolyFnSig, Ty, TyCtxt, TyKind,
TypeAndMut, UintTy,
};
use rustc_middle::{bug, span_bug};
use rustc_span::def_id::DefId;
use rustc_span::DUMMY_SP;
use rustc_span::{Span, Symbol};
use rustc_target::abi::call::{ArgAbi, ArgAttributes, FnAbi, PassMode};
use rustc_target::abi::{
Abi, Align, FieldsShape, LayoutS, Primitive, Scalar, Size, TagEncoding, VariantIdx, Variants,
};
use rustc_target::spec::abi::Abi as SpecAbi;
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::fmt;
use num_traits::cast::FromPrimitive;
pub(crate) fn provide(providers: &mut Providers) {
// This is a lil weird: so, we obviously don't support C ABIs at all. However, libcore does declare some extern
// C functions:
// https://github.com/rust-lang/rust/blob/5fae56971d8487088c0099c82c0a5ce1638b5f62/library/core/src/slice/cmp.rs#L119
// However, those functions will be implemented by compiler-builtins:
// https://github.com/rust-lang/rust/blob/5fae56971d8487088c0099c82c0a5ce1638b5f62/library/core/src/lib.rs#L23-L27
// This theoretically then should be fine to leave as C, but, there's no backend hook for
// `FnAbi::adjust_for_cabi`, causing it to panic:
// https://github.com/rust-lang/rust/blob/5fae56971d8487088c0099c82c0a5ce1638b5f62/compiler/rustc_target/src/abi/call/mod.rs#L603
// So, treat any `extern "C"` functions as `extern "unadjusted"`, to be able to compile libcore with arch=spirv.
providers.fn_sig = |tcx, def_id| {
// We can't capture the old fn_sig and just call that, because fn_sig is a `fn`, not a `Fn`, i.e. it can't
// capture variables. Fortunately, the defaults are exposed (thanks rustdoc), so use that instead.
let result = (rustc_interface::DEFAULT_QUERY_PROVIDERS.fn_sig)(tcx, def_id);
result.map_bound(|outer| {
outer.map_bound(|mut inner| {
if let SpecAbi::C { .. } = inner.abi {
inner.abi = SpecAbi::Unadjusted;
}
inner
})
})
};
// For the Rust ABI, `FnAbi` adjustments are backend-agnostic, but they will
// use features like `PassMode::Cast`, that are incompatible with SPIR-V.
// By hooking the queries computing `FnAbi`s, we can recompute the `FnAbi`
// from the return/args layouts, to e.g. prefer using `PassMode::Direct`.
fn readjust_fn_abi<'tcx>(
tcx: TyCtxt<'tcx>,
fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
) -> &'tcx FnAbi<'tcx, Ty<'tcx>> {
let readjust_arg_abi = |arg: &ArgAbi<'tcx, Ty<'tcx>>| {
let mut arg = ArgAbi::new(&tcx, arg.layout, |_, _, _| ArgAttributes::new());
// Avoid pointlessly passing ZSTs, just like the official Rust ABI.
if arg.layout.is_zst() {
arg.mode = PassMode::Ignore;
}
arg
};
tcx.arena.alloc(FnAbi {
args: fn_abi.args.iter().map(readjust_arg_abi).collect(),
ret: readjust_arg_abi(&fn_abi.ret),
// FIXME(eddyb) validate some of these, and report errors - however,
// we can't just emit errors from here, since we have no `Span`, so
// we should have instead a check on MIR for e.g. C variadic calls.
c_variadic: fn_abi.c_variadic,
fixed_count: fn_abi.fixed_count,
conv: fn_abi.conv,
can_unwind: fn_abi.can_unwind,
})
}
providers.fn_abi_of_fn_ptr = |tcx, key| {
let result = (rustc_interface::DEFAULT_QUERY_PROVIDERS.fn_abi_of_fn_ptr)(tcx, key);
Ok(readjust_fn_abi(tcx, result?))
};
providers.fn_abi_of_instance = |tcx, key| {
let result = (rustc_interface::DEFAULT_QUERY_PROVIDERS.fn_abi_of_instance)(tcx, key);
Ok(readjust_fn_abi(tcx, result?))
};
// FIXME(eddyb) remove this by deriving `Clone` for `LayoutS` upstream.
// FIXME(eddyb) the `S` suffix is a naming antipattern, rename upstream.
fn clone_layout(layout: &LayoutS) -> LayoutS {
let LayoutS {
ref fields,
ref variants,
abi,
largest_niche,
align,
size,
max_repr_align,
unadjusted_abi_align,
} = *layout;
LayoutS {
fields: match *fields {
FieldsShape::Primitive => FieldsShape::Primitive,
FieldsShape::Union(count) => FieldsShape::Union(count),
FieldsShape::Array { stride, count } => FieldsShape::Array { stride, count },
FieldsShape::Arbitrary {
ref offsets,
ref memory_index,
} => FieldsShape::Arbitrary {
offsets: offsets.clone(),
memory_index: memory_index.clone(),
},
},
variants: match *variants {
Variants::Single { index } => Variants::Single { index },
Variants::Multiple {
tag,
ref tag_encoding,
tag_field,
ref variants,
} => Variants::Multiple {
tag,
tag_encoding: match *tag_encoding {
TagEncoding::Direct => TagEncoding::Direct,
TagEncoding::Niche {
untagged_variant,
ref niche_variants,
niche_start,
} => TagEncoding::Niche {
untagged_variant,
niche_variants: niche_variants.clone(),
niche_start,
},
},
tag_field,
variants: variants.clone(),
},
},
abi,
largest_niche,
align,
size,
max_repr_align,
unadjusted_abi_align,
}
}
providers.layout_of = |tcx, key| {
let TyAndLayout { ty, mut layout } =
(rustc_interface::DEFAULT_QUERY_PROVIDERS.layout_of)(tcx, key)?;
#[allow(clippy::match_like_matches_macro)]
let hide_niche = match ty.kind() {
ty::Bool => true,
_ => false,
};
if hide_niche {
layout = tcx.mk_layout(LayoutS {
largest_niche: None,
..clone_layout(layout.0.0)
});
}
Ok(TyAndLayout { ty, layout })
};
}
/// If a struct contains a pointer to itself, even indirectly, then doing a naiive recursive walk
/// of the fields will result in an infinite loop. Because pointers are the only thing that are
/// allowed to be recursive, keep track of what pointers we've translated, or are currently in the
/// progress of translating, and break the recursion that way. This struct manages that state
/// tracking.
#[derive(Default)]
pub struct RecursivePointeeCache<'tcx> {
map: RefCell<FxHashMap<PointeeTy<'tcx>, PointeeDefState>>,
}
impl<'tcx> RecursivePointeeCache<'tcx> {
fn begin(&self, cx: &CodegenCx<'tcx>, span: Span, pointee: PointeeTy<'tcx>) -> Option<Word> {
match self.map.borrow_mut().entry(pointee) {
// State: This is the first time we've seen this type. Record that we're beginning to translate this type,
// and start doing the translation.
Entry::Vacant(entry) => {
entry.insert(PointeeDefState::Defining);
None
}
Entry::Occupied(mut entry) => match *entry.get() {
// State: This is the second time we've seen this type, and we're already translating this type. If we
// were to try to translate the type now, we'd get a stack overflow, due to continually recursing. So,
// emit an OpTypeForwardPointer, and use that ID. (This is the juicy part of this algorithm)
PointeeDefState::Defining => {
let new_id = cx.emit_global().id();
// NOTE(eddyb) we emit `StorageClass::Generic` here, but later
// the linker will specialize the entire SPIR-V module to use
// storage classes inferred from `OpVariable`s.
cx.emit_global()
.type_forward_pointer(new_id, StorageClass::Generic);
entry.insert(PointeeDefState::DefiningWithForward(new_id));
cx.zombie_with_span(
new_id,
span,
"cannot create self-referential types, even through pointers",
);
Some(new_id)
}
// State: This is the third or more time we've seen this type, and we've already emitted an
// OpTypeForwardPointer. Just use the ID we've already emitted. (Alternatively, we already defined this
// type, so just use that.)
PointeeDefState::DefiningWithForward(id) | PointeeDefState::Defined(id) => Some(id),
},
}
}
fn end(
&self,
cx: &CodegenCx<'tcx>,
span: Span,
pointee: PointeeTy<'tcx>,
pointee_spv: Word,
) -> Word {
match self.map.borrow_mut().entry(pointee) {
// We should have hit begin() on this type already, which always inserts an entry.
Entry::Vacant(_) => {
span_bug!(span, "RecursivePointeeCache::end should always have entry")
}
Entry::Occupied(mut entry) => match *entry.get() {
// State: There have been no recursive references to this type while defining it, and so no
// OpTypeForwardPointer has been emitted. This is the most common case.
PointeeDefState::Defining => {
let id = SpirvType::Pointer {
pointee: pointee_spv,
}
.def(span, cx);
entry.insert(PointeeDefState::Defined(id));
id
}
// State: There was a recursive reference to this type, and so an OpTypeForwardPointer has been emitted.
// Make sure to use the same ID.
PointeeDefState::DefiningWithForward(id) => {
entry.insert(PointeeDefState::Defined(id));
SpirvType::Pointer {
pointee: pointee_spv,
}
.def_with_id(cx, span, id)
}
PointeeDefState::Defined(_) => {
span_bug!(span, "RecursivePointeeCache::end defined pointer twice")
}
},
}
}
}
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
enum PointeeTy<'tcx> {
Ty(TyAndLayout<'tcx>),
Fn(PolyFnSig<'tcx>),
}
impl fmt::Display for PointeeTy<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
PointeeTy::Ty(ty) => write!(f, "{}", ty.ty),
PointeeTy::Fn(ty) => write!(f, "{ty}"),
}
}
}
enum PointeeDefState {
Defining,
DefiningWithForward(Word),
Defined(Word),
}
/// Various type-like things can be converted to a spirv type - normal types, function types, etc. - and this trait
/// provides a uniform way of translating them.
pub trait ConvSpirvType<'tcx> {
fn spirv_type(&self, span: Span, cx: &CodegenCx<'tcx>) -> Word;
}
impl<'tcx> ConvSpirvType<'tcx> for PointeeTy<'tcx> {
fn spirv_type(&self, span: Span, cx: &CodegenCx<'tcx>) -> Word {
match *self {
PointeeTy::Ty(ty) => ty.spirv_type(span, cx),
PointeeTy::Fn(ty) => cx
.fn_abi_of_fn_ptr(ty, ty::List::empty())
.spirv_type(span, cx),
}
}
}
impl<'tcx> ConvSpirvType<'tcx> for FnAbi<'tcx, Ty<'tcx>> {
fn spirv_type(&self, span: Span, cx: &CodegenCx<'tcx>) -> Word {
// FIXME(eddyb) use `AccumulateVec`s just like `rustc` itself does.
let mut argument_types = Vec::new();
let return_type = match self.ret.mode {
PassMode::Ignore => SpirvType::Void.def(span, cx),
PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.spirv_type(span, cx),
PassMode::Cast { .. } | PassMode::Indirect { .. } => span_bug!(
span,
"query hooks should've made this `PassMode` impossible: {:#?}",
self.ret
),
};
for arg in self.args.iter() {
let arg_type = match arg.mode {
PassMode::Ignore => continue,
PassMode::Direct(_) => arg.layout.spirv_type(span, cx),
PassMode::Pair(_, _) => {
argument_types.push(scalar_pair_element_backend_type(cx, span, arg.layout, 0));
argument_types.push(scalar_pair_element_backend_type(cx, span, arg.layout, 1));
continue;
}
PassMode::Cast { .. } | PassMode::Indirect { .. } => span_bug!(
span,
"query hooks should've made this `PassMode` impossible: {:#?}",
arg
),
};
argument_types.push(arg_type);
}
SpirvType::Function {
return_type,
arguments: &argument_types,
}
.def(span, cx)
}
}
impl<'tcx> ConvSpirvType<'tcx> for TyAndLayout<'tcx> {
fn spirv_type(&self, mut span: Span, cx: &CodegenCx<'tcx>) -> Word {
if let TyKind::Adt(adt, args) = *self.ty.kind() {
if span == DUMMY_SP {
span = cx.tcx.def_span(adt.did());
}
let attrs = AggregatedSpirvAttributes::parse(cx, cx.tcx.get_attrs_unchecked(adt.did()));
if let Some(intrinsic_type_attr) = attrs.intrinsic_type.map(|attr| attr.value) {
if let Ok(spirv_type) =
trans_intrinsic_type(cx, span, *self, args, intrinsic_type_attr)
{
return spirv_type;
}
}
}
// Note: ty.layout is orthogonal to ty.ty, e.g. `ManuallyDrop<Result<isize, isize>>` has abi
// `ScalarPair`.
// There's a few layers that we go through here. First we inspect layout.abi, then if relevant, layout.fields, etc.
match self.abi {
Abi::Uninhabited => SpirvType::Adt {
def_id: def_id_for_spirv_type_adt(*self),
size: Some(Size::ZERO),
align: Align::from_bytes(0).unwrap(),
field_types: &[],
field_offsets: &[],
field_names: None,
}
.def_with_name(cx, span, TyLayoutNameKey::from(*self)),
Abi::Scalar(scalar) => trans_scalar(cx, span, *self, scalar, Size::ZERO),
Abi::ScalarPair(a, b) => {
// NOTE(eddyb) unlike `Abi::Scalar`'s simpler newtype-unpacking
// behavior, `Abi::ScalarPair` can be composed in two ways:
// * two `Abi::Scalar` fields (and any number of ZST fields),
// gets handled the same as a `struct { a, b }`, further below
// * an `Abi::ScalarPair` field (and any number of ZST fields),
// which requires more work to allow taking a reference to
// that field, and there are two potential approaches:
// 1. wrapping that field's SPIR-V type in a single-field
// `OpTypeStruct` - this has the disadvantage that GEPs
// would have to inject an extra `0` field index, and other
// field-related operations would also need additional work
// 2. reusing that field's SPIR-V type, instead of defining
// a new one, offering the `(a, b)` shape `rustc_codegen_ssa`
// expects, while letting noop pointercasts access the sole
// `Abi::ScalarPair` field - this is the approach taken here
let mut non_zst_fields = (0..self.fields.count())
.map(|i| (i, self.field(cx, i)))
.filter(|(_, field)| !field.is_zst());
let sole_non_zst_field = match (non_zst_fields.next(), non_zst_fields.next()) {
(Some(field), None) => Some(field),
_ => None,
};
if let Some((i, field)) = sole_non_zst_field {
// Only unpack a newtype if the field and the newtype line up
// perfectly, in every way that could potentially affect ABI.
if self.fields.offset(i) == Size::ZERO
&& field.size == self.size
&& field.align == self.align
&& field.abi == self.abi
{
return field.spirv_type(span, cx);
}
}
// Note: We can't use auto_struct_layout here because the spirv types here might be undefined due to
// recursive pointer types.
let a_offset = Size::ZERO;
let b_offset = a.primitive().size(cx).align_to(b.primitive().align(cx).abi);
let a = trans_scalar(cx, span, *self, a, a_offset);
let b = trans_scalar(cx, span, *self, b, b_offset);
let size = if self.is_unsized() {
None
} else {
Some(self.size)
};
// FIXME(eddyb) use `ArrayVec` here.
let mut field_names = Vec::new();
if let TyKind::Adt(adt, _) = self.ty.kind() {
if let Variants::Single { index } = self.variants {
for i in self.fields.index_by_increasing_offset() {
let field = &adt.variants()[index].fields[i.into()];
field_names.push(field.name);
}
}
}
SpirvType::Adt {
def_id: def_id_for_spirv_type_adt(*self),
size,
align: self.align.abi,
field_types: &[a, b],
field_offsets: &[a_offset, b_offset],
field_names: if field_names.len() == 2 {
Some(&field_names)
} else {
None
},
}
.def_with_name(cx, span, TyLayoutNameKey::from(*self))
}
Abi::Vector { element, count } => {
let elem_spirv = trans_scalar(cx, span, *self, element, Size::ZERO);
SpirvType::Vector {
element: elem_spirv,
count: count as u32,
}
.def(span, cx)
}
Abi::Aggregate { sized: _ } => trans_aggregate(cx, span, *self),
}
}
}
/// Only pub for `LayoutTypeMethods::scalar_pair_element_backend_type`. Think about what you're
/// doing before calling this.
pub fn scalar_pair_element_backend_type<'tcx>(
cx: &CodegenCx<'tcx>,
span: Span,
ty: TyAndLayout<'tcx>,
index: usize,
) -> Word {
let [a, b] = match ty.layout.abi() {
Abi::ScalarPair(a, b) => [a, b],
other => span_bug!(
span,
"scalar_pair_element_backend_type invalid abi: {:?}",
other
),
};
let offset = match index {
0 => Size::ZERO,
1 => a.primitive().size(cx).align_to(b.primitive().align(cx).abi),
_ => unreachable!(),
};
trans_scalar(cx, span, ty, [a, b][index], offset)
}
/// A "scalar" is a basic building block: bools, ints, floats, pointers. (i.e. not something complex like a struct)
/// A "scalar pair" is a bit of a strange concept: if there is a `fn f(x: (u32, u32))`, then what's preferred for
/// performance is to compile that ABI to `f(x_1: u32, x_2: u32)`, i.e. splitting out the pair into their own arguments,
/// and pretending that they're one unit. So, there's quite a bit of special handling around these scalar pairs to enable
/// scenarios like that.
/// I say it's "preferred", but spirv doesn't really care - only CPU ABIs really care here. However, following rustc's
/// lead and doing what they want makes things go smoothly, so we'll implement it here too.
fn trans_scalar<'tcx>(
cx: &CodegenCx<'tcx>,
span: Span,
ty: TyAndLayout<'tcx>,
scalar: Scalar,
offset: Size,
) -> Word {
if scalar.is_bool() {
return SpirvType::Bool.def(span, cx);
}
match scalar.primitive() {
Primitive::Int(width, signedness) => {
SpirvType::Integer(width.size().bits() as u32, signedness).def(span, cx)
}
Primitive::F32 => SpirvType::Float(32).def(span, cx),
Primitive::F64 => SpirvType::Float(64).def(span, cx),
Primitive::Pointer(_) => {
let pointee_ty = dig_scalar_pointee(cx, ty, offset);
// Pointers can be recursive. So, record what we're currently translating, and if we're already translating
// the same type, emit an OpTypeForwardPointer and use that ID.
if let Some(predefined_result) = cx
.type_cache
.recursive_pointee_cache
.begin(cx, span, pointee_ty)
{
predefined_result
} else {
let pointee = pointee_ty.spirv_type(span, cx);
cx.type_cache
.recursive_pointee_cache
.end(cx, span, pointee_ty, pointee)
}
}
}
}
// This is a really weird function, strap in...
// So, rustc_codegen_ssa is designed around scalar pointers being opaque, you shouldn't know the type behind the
// pointer. Unfortunately, that's impossible for us, we need to know the underlying pointee type for various reasons. In
// some cases, this is pretty easy - if it's a TyKind::Ref, then the pointee will be the pointee of the ref (with
// handling for wide pointers, etc.). Unfortunately, there's some pretty advanced processing going on in cx.layout_of:
// for example, `ManuallyDrop<Result<ptr, ptr>>` has abi `ScalarPair`. This means that to figure out the pointee type,
// we have to replicate the logic of cx.layout_of. Part of that is digging into types that are aggregates: for example,
// ManuallyDrop<T> has a single field of type T. We "dig into" that field, and recurse, trying to find a base case that
// we can handle, like TyKind::Ref.
// If the above didn't make sense, please poke Ashley, it's probably easier to explain via conversation.
fn dig_scalar_pointee<'tcx>(
cx: &CodegenCx<'tcx>,
layout: TyAndLayout<'tcx>,
offset: Size,
) -> PointeeTy<'tcx> {
if let FieldsShape::Primitive = layout.fields {
assert_eq!(offset, Size::ZERO);
let pointee = match *layout.ty.kind() {
TyKind::Ref(_, pointee_ty, _) | TyKind::RawPtr(TypeAndMut { ty: pointee_ty, .. }) => {
PointeeTy::Ty(cx.layout_of(pointee_ty))
}
TyKind::FnPtr(sig) => PointeeTy::Fn(sig),
_ => bug!("Pointer is not `&T`, `*T` or `fn` pointer: {:#?}", layout),
};
return pointee;
}
let all_fields = (match &layout.variants {
Variants::Multiple { variants, .. } => 0..variants.len(),
Variants::Single { index } => {
let i = index.as_usize();
i..i + 1
}
})
.flat_map(|variant_idx| {
let variant = layout.for_variant(cx, VariantIdx::new(variant_idx));
(0..variant.fields.count()).map(move |field_idx| {
(
variant.field(cx, field_idx),
variant.fields.offset(field_idx),
)
})
});
let mut pointee = None;
for (field, field_offset) in all_fields {
if field.is_zst() {
continue;
}
if (field_offset..field_offset + field.size).contains(&offset) {
let new_pointee = dig_scalar_pointee(cx, field, offset - field_offset);
match pointee {
Some(old_pointee) if old_pointee != new_pointee => {
cx.tcx.sess.fatal(format!(
"dig_scalar_pointee: unsupported Pointer with different \
pointee types ({old_pointee:?} vs {new_pointee:?}) at offset {offset:?} in {layout:#?}"
));
}
_ => pointee = Some(new_pointee),
}
}
}
pointee.unwrap_or_else(|| {
bug!(
"field containing Pointer scalar at offset {:?} not found in {:#?}",
offset,
layout
)
})
}
// FIXME(eddyb) all `ty: TyAndLayout` variables should be `layout: TyAndLayout`,
// the type is really more "Layout with Ty" (`.ty` field + `Deref`s to `Layout`).
fn trans_aggregate<'tcx>(cx: &CodegenCx<'tcx>, span: Span, ty: TyAndLayout<'tcx>) -> Word {
fn create_zst<'tcx>(cx: &CodegenCx<'tcx>, span: Span, ty: TyAndLayout<'tcx>) -> Word {
SpirvType::Adt {
def_id: def_id_for_spirv_type_adt(ty),
size: Some(Size::ZERO),
align: Align::from_bytes(0).unwrap(),
field_types: &[],
field_offsets: &[],
field_names: None,
}
.def_with_name(cx, span, TyLayoutNameKey::from(ty))
}
match ty.fields {
FieldsShape::Primitive => span_bug!(
span,
"trans_aggregate called for FieldsShape::Primitive layout {:#?}",
ty
),
FieldsShape::Union(_) => {
assert!(!ty.is_unsized(), "{ty:#?}");
// Represent the `union` with its largest case, which should work
// for at least `MaybeUninit<T>` (which is between `T` and `()`),
// but also potentially some other ones as well.
// NOTE(eddyb) even if long-term this may become a byte array, that
// only works for "data types" and not "opaque handles" (images etc.).
let largest_case = (0..ty.fields.count())
.map(|i| ty.field(cx, i))
.max_by_key(|case| case.size);
if let Some(case) = largest_case {
assert_eq!(ty.size, case.size);
case.spirv_type(span, cx)
} else {
assert_eq!(ty.size, Size::ZERO);
create_zst(cx, span, ty)
}
}
FieldsShape::Array { stride, count } => {
let element_type = ty.field(cx, 0).spirv_type(span, cx);
if ty.is_unsized() {
// There's a potential for this array to be sized, but the element to be unsized, e.g. `[[u8]; 5]`.
// However, I think rust disallows all these cases, so assert this here.
assert_eq!(count, 0);
SpirvType::RuntimeArray {
element: element_type,
}
.def(span, cx)
} else if count == 0 {
// spir-v doesn't support zero-sized arrays
create_zst(cx, span, ty)
} else {
let count_const = cx.constant_u32(span, count as u32);
let element_spv = cx.lookup_type(element_type);
let stride_spv = element_spv
.sizeof(cx)
.expect("Unexpected unsized type in sized FieldsShape::Array")
.align_to(element_spv.alignof(cx));
assert_eq!(stride_spv, stride);
SpirvType::Array {
element: element_type,
count: count_const,
}
.def(span, cx)
}
}
FieldsShape::Arbitrary {
offsets: _,
memory_index: _,
} => trans_struct(cx, span, ty),
}
}
// returns (field_offsets, size, align)
pub fn auto_struct_layout(
cx: &CodegenCx<'_>,
field_types: &[Word],
) -> (Vec<Size>, Option<Size>, Align) {
// FIXME(eddyb) use `AccumulateVec`s just like `rustc` itself does.
let mut field_offsets = Vec::with_capacity(field_types.len());
let mut offset = Some(Size::ZERO);
let mut max_align = Align::from_bytes(0).unwrap();
for &field_type in field_types {
let spirv_type = cx.lookup_type(field_type);
let field_size = spirv_type.sizeof(cx);
let field_align = spirv_type.alignof(cx);
let this_offset = offset
.expect("Unsized values can only be the last field in a struct")
.align_to(field_align);
field_offsets.push(this_offset);
if field_align > max_align {
max_align = field_align;
}
offset = field_size.map(|size| this_offset + size);
}
(field_offsets, offset, max_align)
}
// see struct_llfields in librustc_codegen_llvm for implementation hints
fn trans_struct<'tcx>(cx: &CodegenCx<'tcx>, span: Span, ty: TyAndLayout<'tcx>) -> Word {
let size = if ty.is_unsized() { None } else { Some(ty.size) };
let align = ty.align.abi;
// FIXME(eddyb) use `AccumulateVec`s just like `rustc` itself does.
let mut field_types = Vec::new();
let mut field_offsets = Vec::new();
let mut field_names = Vec::new();
for i in ty.fields.index_by_increasing_offset() {
let field_ty = ty.field(cx, i);
field_types.push(field_ty.spirv_type(span, cx));
let offset = ty.fields.offset(i);
field_offsets.push(offset);
if let Variants::Single { index } = ty.variants {
if let TyKind::Adt(adt, _) = ty.ty.kind() {
let field = &adt.variants()[index].fields[i.into()];
field_names.push(field.name);
} else {
// FIXME(eddyb) this looks like something that should exist in rustc.
field_names.push(Symbol::intern(&format!("{i}")));
}
} else {
if let TyKind::Adt(_, _) = ty.ty.kind() {
} else {
span_bug!(span, "Variants::Multiple not TyKind::Adt");
}
if i == 0 {
field_names.push(cx.sym.discriminant);
} else {
cx.tcx.sess.fatal("Variants::Multiple has multiple fields")
}
};
}
SpirvType::Adt {
def_id: def_id_for_spirv_type_adt(ty),
size,
align,
field_types: &field_types,
field_offsets: &field_offsets,
field_names: Some(&field_names),
}
.def_with_name(cx, span, TyLayoutNameKey::from(ty))
}
/// Grab a `DefId` from the type if possible to avoid too much deduplication,
/// which could result in one SPIR-V `OpType*` having many names
/// (not in itself an issue, but it makes error reporting harder).
fn def_id_for_spirv_type_adt(layout: TyAndLayout<'_>) -> Option<DefId> {
match *layout.ty.kind() {
TyKind::Adt(def, _) => Some(def.did()),
TyKind::Foreign(def_id) | TyKind::Closure(def_id, _) | TyKind::Generator(def_id, ..) => {
Some(def_id)
}
_ => None,
}
}
/// Minimal and cheaply comparable/hashable subset of the information contained
/// in `TyLayout` that can be used to generate a name (assuming a nominal type).
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct TyLayoutNameKey<'tcx> {
ty: Ty<'tcx>,
variant: Option<VariantIdx>,
}
impl<'tcx> From<TyAndLayout<'tcx>> for TyLayoutNameKey<'tcx> {
fn from(layout: TyAndLayout<'tcx>) -> Self {
TyLayoutNameKey {
ty: layout.ty,
variant: match layout.variants {
Variants::Single { index } => Some(index),
Variants::Multiple { .. } => None,
},
}
}
}
impl fmt::Display for TyLayoutNameKey<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.ty)?;
if let (TyKind::Adt(def, _), Some(index)) = (self.ty.kind(), self.variant) {
if def.is_enum() && !def.variants().is_empty() {
write!(f, "::{}", def.variants()[index].name)?;
}
}
if let (TyKind::Generator(_, _, _), Some(index)) = (self.ty.kind(), self.variant) {
write!(f, "::{}", GeneratorArgs::variant_name(index))?;
}
Ok(())
}
}
fn trans_intrinsic_type<'tcx>(
cx: &CodegenCx<'tcx>,
span: Span,
ty: TyAndLayout<'tcx>,
args: GenericArgsRef<'tcx>,
intrinsic_type_attr: IntrinsicType,
) -> Result<Word, ErrorGuaranteed> {
match intrinsic_type_attr {
IntrinsicType::GenericImageType => {
// see SpirvType::sizeof
if ty.size != Size::from_bytes(4) {
return Err(cx
.tcx
.sess
.err("#[spirv(generic_image)] type must have size 4"));
}
// fn type_from_variant_discriminant<'tcx, P: FromPrimitive>(
// cx: &CodegenCx<'tcx>,
// const_: Const<'tcx>,
// ) -> P {
// let adt_def = const_.ty.ty_adt_def().unwrap();
// assert!(adt_def.is_enum());
// let destructured = cx.tcx.destructure_const(ParamEnv::reveal_all().and(const_));
// let idx = destructured.variant.unwrap();
// let value = const_.ty.discriminant_for_variant(cx.tcx, idx).unwrap().val as u64;
// <_>::from_u64(value).unwrap()
// }
let sampled_type = match args.type_at(0).kind() {
TyKind::Int(int) => match int {
IntTy::Isize => {
SpirvType::Integer(cx.tcx.data_layout.pointer_size.bits() as u32, true)
.def(span, cx)
}
IntTy::I8 => SpirvType::Integer(8, true).def(span, cx),
IntTy::I16 => SpirvType::Integer(16, true).def(span, cx),
IntTy::I32 => SpirvType::Integer(32, true).def(span, cx),
IntTy::I64 => SpirvType::Integer(64, true).def(span, cx),
IntTy::I128 => SpirvType::Integer(128, true).def(span, cx),
},
TyKind::Uint(uint) => match uint {
UintTy::Usize => {
SpirvType::Integer(cx.tcx.data_layout.pointer_size.bits() as u32, false)
.def(span, cx)
}
UintTy::U8 => SpirvType::Integer(8, false).def(span, cx),
UintTy::U16 => SpirvType::Integer(16, false).def(span, cx),
UintTy::U32 => SpirvType::Integer(32, false).def(span, cx),
UintTy::U64 => SpirvType::Integer(64, false).def(span, cx),
UintTy::U128 => SpirvType::Integer(128, false).def(span, cx),
},
TyKind::Float(FloatTy::F32) => SpirvType::Float(32).def(span, cx),
TyKind::Float(FloatTy::F64) => SpirvType::Float(64).def(span, cx),
_ => {
return Err(cx
.tcx
.sess
.span_err(span, "Invalid sampled type to `Image`."));
}
};
// let dim: spirv::Dim = type_from_variant_discriminant(cx, args.const_at(1));
// let depth: u32 = type_from_variant_discriminant(cx, args.const_at(2));
// let arrayed: u32 = type_from_variant_discriminant(cx, args.const_at(3));
// let multisampled: u32 = type_from_variant_discriminant(cx, args.const_at(4));
// let sampled: u32 = type_from_variant_discriminant(cx, args.const_at(5));
// let image_format: spirv::ImageFormat =
// type_from_variant_discriminant(cx, args.const_at(6));
fn const_int_value<'tcx, P: FromPrimitive>(
cx: &CodegenCx<'tcx>,
const_: Const<'tcx>,
) -> Result<P, ErrorGuaranteed> {
assert!(const_.ty().is_integral());
let value = const_.eval_bits(cx.tcx, ParamEnv::reveal_all());
match P::from_u128(value) {
Some(v) => Ok(v),
None => Err(cx
.tcx
.sess
.err(format!("Invalid value for Image const generic: {value}"))),
}
}
let dim = const_int_value(cx, args.const_at(1))?;
let depth = const_int_value(cx, args.const_at(2))?;
let arrayed = const_int_value(cx, args.const_at(3))?;
let multisampled = const_int_value(cx, args.const_at(4))?;
let sampled = const_int_value(cx, args.const_at(5))?;
let image_format = const_int_value(cx, args.const_at(6))?;
let ty = SpirvType::Image {
sampled_type,
dim,
depth,
arrayed,
multisampled,
sampled,
image_format,
};
Ok(ty.def(span, cx))
}
IntrinsicType::Sampler => {
// see SpirvType::sizeof
if ty.size != Size::from_bytes(4) {
return Err(cx.tcx.sess.err("#[spirv(sampler)] type must have size 4"));
}
Ok(SpirvType::Sampler.def(span, cx))
}
IntrinsicType::AccelerationStructureKhr => {
Ok(SpirvType::AccelerationStructureKhr.def(span, cx))
}
IntrinsicType::RayQueryKhr => Ok(SpirvType::RayQueryKhr.def(span, cx)),
IntrinsicType::SampledImage => {
// see SpirvType::sizeof
if ty.size != Size::from_bytes(4) {
return Err(cx
.tcx
.sess
.err("#[spirv(sampled_image)] type must have size 4"));
}
// We use a generic to indicate the underlying image type of the sampled image.
// The spirv type of it will be generated by querying the type of the first generic.
if let Some(image_ty) = args.types().next() {
// TODO: enforce that the generic param is an image type?
let image_type = cx.layout_of(image_ty).spirv_type(span, cx);
Ok(SpirvType::SampledImage { image_type }.def(span, cx))
} else {
Err(cx
.tcx
.sess
.err("#[spirv(sampled_image)] type must have a generic image type"))
}
}
IntrinsicType::RuntimeArray => {
if ty.size != Size::from_bytes(4) {
return Err(cx
.tcx
.sess
.err("#[spirv(runtime_array)] type must have size 4"));
}
// We use a generic to indicate the underlying element type.
// The spirv type of it will be generated by querying the type of the first generic.
if let Some(elem_ty) = args.types().next() {
let element = cx.layout_of(elem_ty).spirv_type(span, cx);
Ok(SpirvType::RuntimeArray { element }.def(span, cx))
} else {
Err(cx
.tcx
.sess
.err("#[spirv(runtime_array)] type must have a generic element type"))
}
}
IntrinsicType::Matrix => {
let span = def_id_for_spirv_type_adt(ty)
.map(|did| cx.tcx.def_span(did))
.expect("#[spirv(matrix)] must be added to a type which has DefId");
let field_types = (0..ty.fields.count())
.map(|i| ty.field(cx, i).spirv_type(span, cx))
.collect::<Vec<_>>();
if field_types.len() < 2 {
return Err(cx
.tcx
.sess
.span_err(span, "#[spirv(matrix)] type must have at least two fields"));
}
let elem_type = field_types[0];
if !field_types.iter().all(|&ty| ty == elem_type) {
return Err(cx.tcx.sess.span_err(
span,
"#[spirv(matrix)] type fields must all be the same type",
));
}
match cx.lookup_type(elem_type) {
SpirvType::Vector { .. } => (),
ty => {
return Err(cx
.tcx
.sess
.struct_span_err(span, "#[spirv(matrix)] type fields must all be vectors")
.note(format!("field type is {}", ty.debug(elem_type, cx)))
.emit());
}
}
Ok(SpirvType::Matrix {
element: elem_type,
count: field_types.len() as u32,
}
.def(span, cx))
}
}
}