1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
use super::Builder;
use crate::abi::ConvSpirvType;
use crate::builder_spirv::{BuilderCursor, SpirvConst, SpirvValue, SpirvValueExt, SpirvValueKind};
use crate::custom_insts::{CustomInst, CustomOp};
use crate::rustc_codegen_ssa::traits::BaseTypeMethods;
use crate::spirv_type::SpirvType;
use itertools::Itertools;
use rspirv::dr::{InsertPoint, Instruction, Operand};
use rspirv::spirv::{Capability, MemoryModel, MemorySemantics, Op, Scope, StorageClass, Word};
use rustc_apfloat::{ieee, Float, Round, Status};
use rustc_codegen_ssa::common::{
    AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
};
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{
    BackendTypes, BuilderMethods, ConstMethods, LayoutTypeMethods, OverflowOp,
};
use rustc_codegen_ssa::MemFlags;
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::Ty;
use rustc_span::Span;
use rustc_target::abi::call::FnAbi;
use rustc_target::abi::{Abi, Align, Scalar, Size, WrappingRange};
use smallvec::SmallVec;
use std::borrow::Cow;
use std::cell::Cell;
use std::convert::TryInto;
use std::iter::{self, empty};

macro_rules! simple_op {
    (
        $func_name:ident, $inst_name:ident
        $(, fold_const {
            $(int($fold_int_lhs:ident, $fold_int_rhs:ident) => $fold_int:expr)?
        })?
    ) => {
        fn $func_name(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
            assert_ty_eq!(self, lhs.ty, rhs.ty);
            let result_type = lhs.ty;

            $(if let Some(const_lhs) = self.builder.lookup_const(lhs) {
                if let Some(const_rhs) = self.builder.lookup_const(rhs) {
                    match self.lookup_type(result_type) {
                        $(SpirvType::Integer(bits, signed) => {
                            let size = Size::from_bits(bits);
                            let as_u128 = |const_val| {
                                let x = match const_val {
                                    SpirvConst::U32(x) => x as u128,
                                    SpirvConst::U64(x) => x as u128,
                                    _ => return None,
                                };
                                Some(if signed {
                                    size.sign_extend(x)
                                } else {
                                    size.truncate(x)
                                })
                            };
                            if let Some($fold_int_lhs) = as_u128(const_lhs) {
                                if let Some($fold_int_rhs) = as_u128(const_rhs) {
                                    return self.const_uint_big(result_type, $fold_int);
                                }
                            }
                        })?
                        _ => {}
                    }
                }
            })?

            self.emit()
                .$inst_name(result_type, None, lhs.def(self), rhs.def(self))
                .unwrap()
                .with_type(result_type)
        }
    };
}

// shl and shr allow different types as their operands
macro_rules! simple_op_unchecked_type {
    ($func_name:ident, $inst_name:ident) => {
        fn $func_name(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
            self.emit()
                .$inst_name(lhs.ty, None, lhs.def(self), rhs.def(self))
                .unwrap()
                .with_type(lhs.ty)
        }
    };
}

macro_rules! simple_uni_op {
    ($func_name:ident, $inst_name:ident) => {
        fn $func_name(&mut self, val: Self::Value) -> Self::Value {
            self.emit()
                .$inst_name(val.ty, None, val.def(self))
                .unwrap()
                .with_type(val.ty)
        }
    };
}

fn memset_fill_u16(b: u8) -> u16 {
    b as u16 | ((b as u16) << 8)
}

fn memset_fill_u32(b: u8) -> u32 {
    b as u32 | ((b as u32) << 8) | ((b as u32) << 16) | ((b as u32) << 24)
}

fn memset_fill_u64(b: u8) -> u64 {
    b as u64
        | ((b as u64) << 8)
        | ((b as u64) << 16)
        | ((b as u64) << 24)
        | ((b as u64) << 32)
        | ((b as u64) << 40)
        | ((b as u64) << 48)
        | ((b as u64) << 56)
}

fn memset_dynamic_scalar(
    builder: &Builder<'_, '_>,
    fill_var: Word,
    byte_width: usize,
    is_float: bool,
) -> Word {
    let composite_type = SpirvType::Vector {
        element: SpirvType::Integer(8, false).def(builder.span(), builder),
        count: byte_width as u32,
    }
    .def(builder.span(), builder);
    let composite = builder
        .emit()
        .composite_construct(
            composite_type,
            None,
            iter::repeat(fill_var).take(byte_width),
        )
        .unwrap();
    let result_type = if is_float {
        SpirvType::Float(byte_width as u32 * 8)
    } else {
        SpirvType::Integer(byte_width as u32 * 8, false)
    };
    builder
        .emit()
        .bitcast(result_type.def(builder.span(), builder), None, composite)
        .unwrap()
}

impl<'a, 'tcx> Builder<'a, 'tcx> {
    fn ordering_to_semantics_def(&self, ordering: AtomicOrdering) -> SpirvValue {
        let mut invalid_seq_cst = false;
        let semantics = match ordering {
            AtomicOrdering::Unordered | AtomicOrdering::Relaxed => MemorySemantics::NONE,
            // Note: rustc currently has AtomicOrdering::Consume commented out, if it ever becomes
            // uncommented, it should be MakeVisible | Acquire.
            AtomicOrdering::Acquire => MemorySemantics::MAKE_VISIBLE | MemorySemantics::ACQUIRE,
            AtomicOrdering::Release => MemorySemantics::MAKE_AVAILABLE | MemorySemantics::RELEASE,
            AtomicOrdering::AcquireRelease => {
                MemorySemantics::MAKE_AVAILABLE
                    | MemorySemantics::MAKE_VISIBLE
                    | MemorySemantics::ACQUIRE_RELEASE
            }
            AtomicOrdering::SequentiallyConsistent => {
                let emit = self.emit();
                let memory_model = emit.module_ref().memory_model.as_ref().unwrap();
                if memory_model.operands[1].unwrap_memory_model() == MemoryModel::Vulkan {
                    invalid_seq_cst = true;
                }
                MemorySemantics::MAKE_AVAILABLE
                    | MemorySemantics::MAKE_VISIBLE
                    | MemorySemantics::SEQUENTIALLY_CONSISTENT
            }
        };
        let semantics = self.constant_u32(self.span(), semantics.bits());
        if invalid_seq_cst {
            self.zombie(
                semantics.def(self),
                "cannot use AtomicOrdering=SequentiallyConsistent on Vulkan memory model \
                 (check if AcquireRelease fits your needs)",
            );
        }
        semantics
    }

    fn memset_const_pattern(&self, ty: &SpirvType<'tcx>, fill_byte: u8) -> Word {
        match *ty {
            SpirvType::Void => self.fatal("memset invalid on void pattern"),
            SpirvType::Bool => self.fatal("memset invalid on bool pattern"),
            SpirvType::Integer(width, _signedness) => match width {
                8 => self.constant_u8(self.span(), fill_byte).def(self),
                16 => self
                    .constant_u16(self.span(), memset_fill_u16(fill_byte))
                    .def(self),
                32 => self
                    .constant_u32(self.span(), memset_fill_u32(fill_byte))
                    .def(self),
                64 => self
                    .constant_u64(self.span(), memset_fill_u64(fill_byte))
                    .def(self),
                _ => self.fatal(format!(
                    "memset on integer width {width} not implemented yet"
                )),
            },
            SpirvType::Float(width) => match width {
                32 => self
                    .constant_f32(self.span(), f32::from_bits(memset_fill_u32(fill_byte)))
                    .def(self),
                64 => self
                    .constant_f64(self.span(), f64::from_bits(memset_fill_u64(fill_byte)))
                    .def(self),
                _ => self.fatal(format!("memset on float width {width} not implemented yet")),
            },
            SpirvType::Adt { .. } => self.fatal("memset on structs not implemented yet"),
            SpirvType::Vector { element, count } | SpirvType::Matrix { element, count } => {
                let elem_pat = self.memset_const_pattern(&self.lookup_type(element), fill_byte);
                self.constant_composite(
                    ty.def(self.span(), self),
                    iter::repeat(elem_pat).take(count as usize),
                )
                .def(self)
            }
            SpirvType::Array { element, count } => {
                let elem_pat = self.memset_const_pattern(&self.lookup_type(element), fill_byte);
                let count = self.builder.lookup_const_u64(count).unwrap() as usize;
                self.constant_composite(
                    ty.def(self.span(), self),
                    iter::repeat(elem_pat).take(count),
                )
                .def(self)
            }
            SpirvType::RuntimeArray { .. } => {
                self.fatal("memset on runtime arrays not implemented yet")
            }
            SpirvType::Pointer { .. } => self.fatal("memset on pointers not implemented yet"),
            SpirvType::Function { .. } => self.fatal("memset on functions not implemented yet"),
            SpirvType::Image { .. } => self.fatal("cannot memset image"),
            SpirvType::Sampler => self.fatal("cannot memset sampler"),
            SpirvType::SampledImage { .. } => self.fatal("cannot memset sampled image"),
            SpirvType::InterfaceBlock { .. } => self.fatal("cannot memset interface block"),
            SpirvType::AccelerationStructureKhr => {
                self.fatal("cannot memset acceleration structure")
            }
            SpirvType::RayQueryKhr => self.fatal("cannot memset ray query"),
        }
    }

    fn memset_dynamic_pattern(&self, ty: &SpirvType<'tcx>, fill_var: Word) -> Word {
        match *ty {
            SpirvType::Void => self.fatal("memset invalid on void pattern"),
            SpirvType::Bool => self.fatal("memset invalid on bool pattern"),
            SpirvType::Integer(width, _signedness) => match width {
                8 => fill_var,
                16 => memset_dynamic_scalar(self, fill_var, 2, false),
                32 => memset_dynamic_scalar(self, fill_var, 4, false),
                64 => memset_dynamic_scalar(self, fill_var, 8, false),
                _ => self.fatal(format!(
                    "memset on integer width {width} not implemented yet"
                )),
            },
            SpirvType::Float(width) => match width {
                32 => memset_dynamic_scalar(self, fill_var, 4, true),
                64 => memset_dynamic_scalar(self, fill_var, 8, true),
                _ => self.fatal(format!("memset on float width {width} not implemented yet")),
            },
            SpirvType::Adt { .. } => self.fatal("memset on structs not implemented yet"),
            SpirvType::Array { element, count } => {
                let elem_pat = self.memset_dynamic_pattern(&self.lookup_type(element), fill_var);
                let count = self.builder.lookup_const_u64(count).unwrap() as usize;
                self.emit()
                    .composite_construct(
                        ty.def(self.span(), self),
                        None,
                        iter::repeat(elem_pat).take(count),
                    )
                    .unwrap()
            }
            SpirvType::Vector { element, count } | SpirvType::Matrix { element, count } => {
                let elem_pat = self.memset_dynamic_pattern(&self.lookup_type(element), fill_var);
                self.emit()
                    .composite_construct(
                        ty.def(self.span(), self),
                        None,
                        iter::repeat(elem_pat).take(count as usize),
                    )
                    .unwrap()
            }
            SpirvType::RuntimeArray { .. } => {
                self.fatal("memset on runtime arrays not implemented yet")
            }
            SpirvType::Pointer { .. } => self.fatal("memset on pointers not implemented yet"),
            SpirvType::Function { .. } => self.fatal("memset on functions not implemented yet"),
            SpirvType::Image { .. } => self.fatal("cannot memset image"),
            SpirvType::Sampler => self.fatal("cannot memset sampler"),
            SpirvType::SampledImage { .. } => self.fatal("cannot memset sampled image"),
            SpirvType::InterfaceBlock { .. } => self.fatal("cannot memset interface block"),
            SpirvType::AccelerationStructureKhr => {
                self.fatal("cannot memset acceleration structure")
            }
            SpirvType::RayQueryKhr => self.fatal("cannot memset ray query"),
        }
    }

    fn memset_constant_size(&mut self, ptr: SpirvValue, pat: SpirvValue, size_bytes: u64) {
        let size_elem = self
            .lookup_type(pat.ty)
            .sizeof(self)
            .expect("Memset on unsized values not supported");
        let count = size_bytes / size_elem.bytes();
        if count == 1 {
            self.store(pat, ptr, Align::from_bytes(0).unwrap());
        } else {
            for index in 0..count {
                let const_index = self.constant_u32(self.span(), index as u32);
                let gep_ptr = self.gep(pat.ty, ptr, &[const_index]);
                self.store(pat, gep_ptr, Align::from_bytes(0).unwrap());
            }
        }
    }

    // TODO: Test this is correct
    fn memset_dynamic_size(&mut self, ptr: SpirvValue, pat: SpirvValue, size_bytes: SpirvValue) {
        let size_elem = self
            .lookup_type(pat.ty)
            .sizeof(self)
            .expect("Unable to memset a dynamic sized object");
        let size_elem_const = self.constant_int(size_bytes.ty, size_elem.bytes());
        let zero = self.constant_int(size_bytes.ty, 0);
        let one = self.constant_int(size_bytes.ty, 1);
        let zero_align = Align::from_bytes(0).unwrap();

        let header_bb = self.append_sibling_block("memset_header");
        let body_bb = self.append_sibling_block("memset_body");
        let exit_bb = self.append_sibling_block("memset_exit");

        let count = self.udiv(size_bytes, size_elem_const);
        let index = self.alloca(count.ty, zero_align);
        self.store(zero, index, zero_align);
        self.br(header_bb);

        self.switch_to_block(header_bb);
        let current_index = self.load(count.ty, index, zero_align);
        let cond = self.icmp(IntPredicate::IntULT, current_index, count);
        self.cond_br(cond, body_bb, exit_bb);

        self.switch_to_block(body_bb);
        let gep_ptr = self.gep(pat.ty, ptr, &[current_index]);
        self.store(pat, gep_ptr, zero_align);
        let current_index_plus_1 = self.add(current_index, one);
        self.store(current_index_plus_1, index, zero_align);
        self.br(header_bb);

        self.switch_to_block(exit_bb);
    }

    fn zombie_convert_ptr_to_u(&self, def: Word) {
        self.zombie(def, "cannot convert pointers to integers");
    }

    fn zombie_convert_u_to_ptr(&self, def: Word) {
        self.zombie(def, "cannot convert integers to pointers");
    }

    fn zombie_ptr_equal(&self, def: Word, inst: &str) {
        if !self.builder.has_capability(Capability::VariablePointers) {
            self.zombie(
                def,
                &format!("{inst} without OpCapability VariablePointers"),
            );
        }
    }

    /// Convenience wrapper for `adjust_pointer_for_sized_access`, falling back
    /// on choosing `ty` as the leaf's type (and casting `ptr` to a pointer to it).
    //
    // HACK(eddyb) temporary workaround for untyped pointers upstream.
    // FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
    fn adjust_pointer_for_typed_access(
        &mut self,
        ptr: SpirvValue,
        ty: <Self as BackendTypes>::Type,
    ) -> (SpirvValue, <Self as BackendTypes>::Type) {
        self.lookup_type(ty)
            .sizeof(self)
            .and_then(|size| self.adjust_pointer_for_sized_access(ptr, size))
            .unwrap_or_else(|| (self.pointercast(ptr, self.type_ptr_to(ty)), ty))
    }

    /// If `ptr`'s pointee type contains any prefix field/element of size `size`,
    /// i.e. some leaf which can be used for all accesses of size `size`, return
    /// `ptr` adjusted to point to the innermost such leaf, and the leaf's type.
    //
    // FIXME(eddyb) technically this duplicates `pointercast`, but the main use
    // of `pointercast` is being replaced by this, and this can be more efficient.
    //
    // HACK(eddyb) temporary workaround for untyped pointers upstream.
    // FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
    fn adjust_pointer_for_sized_access(
        &mut self,
        ptr: SpirvValue,
        size: Size,
    ) -> Option<(SpirvValue, <Self as BackendTypes>::Type)> {
        let ptr = ptr.strip_ptrcasts();
        let mut leaf_ty = match self.lookup_type(ptr.ty) {
            SpirvType::Pointer { pointee } => pointee,
            other => self.fatal(format!("non-pointer type: {other:?}")),
        };

        // FIXME(eddyb) this isn't efficient, `recover_access_chain_from_offset`
        // could instead be doing all the extra digging itself.
        let mut indices = SmallVec::<[_; 8]>::new();
        while let Some((inner_indices, inner_ty)) =
            self.recover_access_chain_from_offset(leaf_ty, Size::ZERO, Some(size), None)
        {
            indices.extend(inner_indices);
            leaf_ty = inner_ty;
        }

        let leaf_ptr_ty = (self.lookup_type(leaf_ty).sizeof(self) == Some(size))
            .then(|| self.type_ptr_to(leaf_ty))?;

        let leaf_ptr = if indices.is_empty() {
            assert_ty_eq!(self, ptr.ty, leaf_ptr_ty);
            ptr
        } else {
            let indices = indices
                .into_iter()
                .map(|idx| self.constant_u32(self.span(), idx).def(self))
                .collect::<Vec<_>>();
            self.emit()
                .access_chain(leaf_ptr_ty, None, ptr.def(self), indices)
                .unwrap()
                .with_type(leaf_ptr_ty)
        };
        Some((leaf_ptr, leaf_ty))
    }

    /// If possible, return the appropriate `OpAccessChain` indices for going
    /// from a pointer to `ty`, to a pointer to some leaf field/element of size
    /// `leaf_size` (and optionally type `leaf_ty`), while adding `offset` bytes.
    ///
    /// That is, try to turn `((_: *T) as *u8).add(offset) as *Leaf` into a series
    /// of struct field and array/vector element accesses.
    fn recover_access_chain_from_offset(
        &self,
        mut ty: <Self as BackendTypes>::Type,
        mut offset: Size,
        // FIXME(eddyb) using `None` for "unsized" is a pretty bad design.
        leaf_size_or_unsized: Option<Size>,
        leaf_ty: Option<<Self as BackendTypes>::Type>,
    ) -> Option<(SmallVec<[u32; 8]>, <Self as BackendTypes>::Type)> {
        assert_ne!(Some(ty), leaf_ty);

        // HACK(eddyb) this has the correct ordering (`Sized(_) < Unsized`).
        #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
        enum MaybeSized {
            Sized(Size),
            Unsized,
        }
        let leaf_size = leaf_size_or_unsized.map_or(MaybeSized::Unsized, MaybeSized::Sized);

        // NOTE(eddyb) `ty` and `ty_kind`/`ty_size` should be kept in sync.
        let mut ty_kind = self.lookup_type(ty);

        let mut indices = SmallVec::new();
        loop {
            let ty_size;
            match ty_kind {
                SpirvType::Adt {
                    field_types,
                    field_offsets,
                    ..
                } => {
                    let (i, field_ty, field_ty_kind, field_ty_size, offset_in_field) = field_offsets
                        .iter()
                        .enumerate()
                        .find_map(|(i, &field_offset)| {
                            if field_offset > offset {
                                return None;
                            }

                            // Grab the actual field type to be able to confirm that
                            // the leaf is somewhere inside the field.
                            let field_ty = field_types[i];
                            let field_ty_kind = self.lookup_type(field_ty);
                            let field_ty_size = field_ty_kind
                                .sizeof(self).map_or(MaybeSized::Unsized, MaybeSized::Sized);

                            let offset_in_field = offset - field_offset;
                            if MaybeSized::Sized(offset_in_field) < field_ty_size
                                // If the field is a zero sized type, check the
                                // expected size and type to get the correct entry
                                || offset_in_field == Size::ZERO && leaf_size == MaybeSized::Sized(Size::ZERO) && leaf_ty == Some(field_ty)
                            {
                                Some((i, field_ty, field_ty_kind, field_ty_size, offset_in_field))
                            } else {
                                None
                            }
                        })?;

                    ty = field_ty;
                    ty_kind = field_ty_kind;
                    ty_size = field_ty_size;

                    indices.push(i as u32);
                    offset = offset_in_field;
                }
                SpirvType::Vector { element, .. }
                | SpirvType::Array { element, .. }
                | SpirvType::RuntimeArray { element }
                | SpirvType::Matrix { element, .. } => {
                    ty = element;
                    ty_kind = self.lookup_type(ty);

                    let stride = ty_kind.sizeof(self)?;
                    ty_size = MaybeSized::Sized(stride);

                    indices.push((offset.bytes() / stride.bytes()).try_into().ok()?);
                    offset = Size::from_bytes(offset.bytes() % stride.bytes());
                }
                _ => return None,
            }

            // Avoid digging beyond the point the leaf could actually fit.
            if ty_size < leaf_size {
                return None;
            }

            if offset == Size::ZERO
                && ty_size == leaf_size
                && leaf_ty.map_or(true, |leaf_ty| leaf_ty == ty)
            {
                return Some((indices, ty));
            }
        }
    }

    fn fptoint_sat(
        &mut self,
        signed: bool,
        val: SpirvValue,
        dest_ty: <Self as BackendTypes>::Type,
    ) -> SpirvValue {
        // This uses the old llvm emulation to implement saturation

        let src_ty = self.cx.val_ty(val);
        let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
            assert_eq!(
                self.cx.vector_length(src_ty),
                self.cx.vector_length(dest_ty)
            );
            (self.cx.element_type(src_ty), self.cx.element_type(dest_ty))
        } else {
            (src_ty, dest_ty)
        };
        let int_width = self.cx().int_width(int_ty);
        let float_width = self.cx().float_width(float_ty);
        // LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the
        // destination integer type after rounding towards zero. This `undef` value can cause UB in
        // safe code (see issue #10184), so we implement a saturating conversion on top of it:
        // Semantically, the mathematical value of the input is rounded towards zero to the next
        // mathematical integer, and then the result is clamped into the range of the destination
        // integer type. Positive and negative infinity are mapped to the maximum and minimum value of
        // the destination integer type. NaN is mapped to 0.
        //
        // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
        // a value representable in int_ty.
        // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
        // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
        // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
        // representable. Note that this only works if float_ty's exponent range is sufficiently large.
        // f16 or 256 bit integers would break this property. Right now the smallest float type is f32
        // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
        // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
        // we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
        // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
        let int_max = |signed: bool, int_width: u64| -> u128 {
            let shift_amount = 128 - int_width;
            if signed {
                i128::MAX as u128 >> shift_amount
            } else {
                u128::MAX >> shift_amount
            }
        };
        let int_min = |signed: bool, int_width: u64| -> i128 {
            if signed {
                i128::MIN >> (128 - int_width)
            } else {
                0
            }
        };

        let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
            let rounded_min =
                ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
            assert_eq!(rounded_min.status, Status::OK);
            let rounded_max =
                ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
            assert!(rounded_max.value.is_finite());
            (rounded_min.value.to_bits(), rounded_max.value.to_bits())
        };
        let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
            let rounded_min =
                ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
            assert_eq!(rounded_min.status, Status::OK);
            let rounded_max =
                ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
            assert!(rounded_max.value.is_finite());
            (rounded_min.value.to_bits(), rounded_max.value.to_bits())
        };
        // To implement saturation, we perform the following steps:
        //
        // 1. Cast x to an integer with fpto[su]i. This may result in undef.
        // 2. Compare x to f_min and f_max, and use the comparison results to select:
        //  a) int_ty::MIN if x < f_min or x is NaN
        //  b) int_ty::MAX if x > f_max
        //  c) the result of fpto[su]i otherwise
        // 3. If x is NaN, return 0.0, otherwise return the result of step 2.
        //
        // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
        // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
        // undef does not introduce any non-determinism either.
        // More importantly, the above procedure correctly implements saturating conversion.
        // Proof (sketch):
        // If x is NaN, 0 is returned by definition.
        // Otherwise, x is finite or infinite and thus can be compared with f_min and f_max.
        // This yields three cases to consider:
        // (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
        //     saturating conversion for inputs in that range.
        // (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded
        //     (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
        //     than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX
        //     is correct.
        // (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
        //     int_ty::MIN and therefore the return value of int_ty::MIN is correct.
        // QED.

        let float_bits_to_llval = |bx: &mut Self, bits| {
            let bits_llval = match float_width {
                32 => bx.cx().const_u32(bits as u32),
                64 => bx.cx().const_u64(bits as u64),
                n => bug!("unsupported float width {}", n),
            };
            bx.bitcast(bits_llval, float_ty)
        };
        let (f_min, f_max) = match float_width {
            32 => compute_clamp_bounds_single(signed, int_width),
            64 => compute_clamp_bounds_double(signed, int_width),
            n => bug!("unsupported float width {}", n),
        };
        let f_min = float_bits_to_llval(self, f_min);
        let f_max = float_bits_to_llval(self, f_max);
        let int_max = self.cx().const_uint_big(int_ty, int_max(signed, int_width));
        let int_min = self
            .cx()
            .const_uint_big(int_ty, int_min(signed, int_width) as u128);
        let zero = self.cx().const_uint(int_ty, 0);

        // If we're working with vectors, constants must be "splatted": the constant is duplicated
        // into each lane of the vector.  The algorithm stays the same, we are just using the
        // same constant across all lanes.
        let maybe_splat = |bx: &mut Self, val| {
            if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
                bx.vector_splat(bx.vector_length(dest_ty), val)
            } else {
                val
            }
        };
        let f_min = maybe_splat(self, f_min);
        let f_max = maybe_splat(self, f_max);
        let int_max = maybe_splat(self, int_max);
        let int_min = maybe_splat(self, int_min);
        let zero = maybe_splat(self, zero);

        // Step 1 ...
        let fptosui_result = if signed {
            self.fptosi(val, dest_ty)
        } else {
            self.fptoui(val, dest_ty)
        };
        let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min);
        let greater = self.fcmp(RealPredicate::RealOGT, val, f_max);

        // Step 2: We use two comparisons and two selects, with %s1 being the
        // result:
        //     %less_or_nan = fcmp ult %x, %f_min
        //     %greater = fcmp olt %x, %f_max
        //     %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
        //     %s1 = select %greater, int_ty::MAX, %s0
        // Note that %less_or_nan uses an *unordered* comparison. This
        // comparison is true if the operands are not comparable (i.e., if x is
        // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
        // x is NaN.
        //
        // Performance note: Unordered comparison can be lowered to a "flipped"
        // comparison and a negation, and the negation can be merged into the
        // select. Therefore, it not necessarily any more expensive than an
        // ordered ("normal") comparison. Whether these optimizations will be
        // performed is ultimately up to the backend, but at least x86 does
        // perform them.
        let s0 = self.select(less_or_nan, int_min, fptosui_result);
        let s1 = self.select(greater, int_max, s0);

        // Step 3: NaN replacement.
        // For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN.
        // Therefore we only need to execute this step for signed integer types.
        if signed {
            // LLVM has no isNaN predicate, so we use (x == x) instead
            let cmp = self.fcmp(RealPredicate::RealOEQ, val, val);
            self.select(cmp, s1, zero)
        } else {
            s1
        }
    }
}

impl<'a, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'tcx> {
    fn build(cx: &'a Self::CodegenCx, llbb: Self::BasicBlock) -> Self {
        let cursor = cx.builder.select_block_by_id(llbb);
        // FIXME(eddyb) change `Self::Function` to be more like a function index.
        let current_fn = {
            let emit = cx.emit_with_cursor(cursor);
            let selected_function = emit.selected_function().unwrap();
            let selected_function = &emit.module_ref().functions[selected_function];
            let def_inst = selected_function.def.as_ref().unwrap();
            let def = def_inst.result_id.unwrap();
            let ty = def_inst.operands[1].unwrap_id_ref();
            def.with_type(ty)
        };
        Self {
            cx,
            cursor,
            current_fn,
            basic_block: llbb,
            current_span: Default::default(),
        }
    }

    fn cx(&self) -> &Self::CodegenCx {
        self.cx
    }

    fn llbb(&self) -> Self::BasicBlock {
        self.basic_block
    }

    fn set_span(&mut self, span: Span) {
        // HACK(eddyb) this is what `#[track_caller]` does, and we need it to be
        // able to point at e.g. a use of `panic!`, instead of its implementation,
        // but it should be more fine-grained and/or include macro backtraces in
        // debuginfo (so the decision to use them can be deferred).
        let span = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);

        let old_span = self.current_span.replace(span);

        // FIXME(eddyb) enable this once cross-block interactions are figured out
        // (in particular, every block starts off with no debuginfo active).
        if false {
            // Avoid redundant debuginfo.
            if old_span == Some(span) {
                return;
            }
        }

        // HACK(eddyb) this is only to aid testing (and to not remove the old code).
        let use_custom_insts = true;

        if use_custom_insts {
            // FIXME(eddyb) this should be cached more efficiently.
            let void_ty = SpirvType::Void.def(rustc_span::DUMMY_SP, self);

            // We may not always have valid spans.
            // FIXME(eddyb) reduce the sources of this as much as possible.
            if span.is_dummy() {
                self.custom_inst(void_ty, CustomInst::ClearDebugSrcLoc);
            } else {
                let (file, line_col_range) = self.builder.file_line_col_range_for_debuginfo(span);
                let ((line_start, col_start), (line_end, col_end)) =
                    (line_col_range.start, line_col_range.end);

                self.custom_inst(
                    void_ty,
                    CustomInst::SetDebugSrcLoc {
                        file: Operand::IdRef(file.file_name_op_string_id),
                        line_start: Operand::IdRef(self.const_u32(line_start).def(self)),
                        line_end: Operand::IdRef(self.const_u32(line_end).def(self)),
                        col_start: Operand::IdRef(self.const_u32(col_start).def(self)),
                        col_end: Operand::IdRef(self.const_u32(col_end).def(self)),
                    },
                );
            }

            // HACK(eddyb) remove the previous instruction if made irrelevant.
            let mut builder = self.emit();
            if let (Some(func_idx), Some(block_idx)) =
                (builder.selected_function(), builder.selected_block())
            {
                let block = &mut builder.module_mut().functions[func_idx].blocks[block_idx];
                match &block.instructions[..] {
                    [.., a, b]
                        if a.class.opcode == b.class.opcode
                            && a.operands[..2] == b.operands[..2] =>
                    {
                        block.instructions.remove(block.instructions.len() - 2);
                    }
                    _ => {}
                }
            }
        } else {
            // We may not always have valid spans.
            // FIXME(eddyb) reduce the sources of this as much as possible.
            if span.is_dummy() {
                self.emit().no_line();
            } else {
                let (file, line_col_range) = self.builder.file_line_col_range_for_debuginfo(span);
                let (line, col) = line_col_range.start;

                self.emit().line(file.file_name_op_string_id, line, col);
            }
        }
    }

    // FIXME(eddyb) change `Self::Function` to be more like a function index.
    fn append_block(
        cx: &'a Self::CodegenCx,
        llfn: Self::Function,
        _name: &str,
    ) -> Self::BasicBlock {
        let cursor_fn = cx.builder.select_function_by_id(llfn.def_cx(cx));
        cx.emit_with_cursor(cursor_fn).begin_block(None).unwrap()
    }

    fn append_sibling_block(&mut self, _name: &str) -> Self::BasicBlock {
        self.emit_with_cursor(BuilderCursor {
            function: self.cursor.function,
            block: None,
        })
        .begin_block(None)
        .unwrap()
    }

    fn switch_to_block(&mut self, llbb: Self::BasicBlock) {
        // FIXME(eddyb) this could be more efficient by having an index in
        // `Self::BasicBlock`, not just a SPIR-V ID.
        *self = Self::build(self.cx, llbb);
    }

    fn ret_void(&mut self) {
        self.emit().ret().unwrap();
    }

    fn ret(&mut self, value: Self::Value) {
        let func_ret_ty = {
            let builder = self.emit();
            let func = &builder.module_ref().functions[builder.selected_function().unwrap()];
            func.def.as_ref().unwrap().result_type.unwrap()
        };

        // HACK(eddyb) temporary workaround for untyped pointers upstream.
        // FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
        let value = self.bitcast(value, func_ret_ty);

        self.emit().ret_value(value.def(self)).unwrap();
    }

    fn br(&mut self, dest: Self::BasicBlock) {
        self.emit().branch(dest).unwrap();
    }

    fn cond_br(
        &mut self,
        cond: Self::Value,
        then_llbb: Self::BasicBlock,
        else_llbb: Self::BasicBlock,
    ) {
        let cond = cond.def(self);

        // HACK(eddyb) constant-fold branches early on, as the `core` library is
        // starting to get a lot of `if cfg!(debug_assertions)` added to it.
        match self.builder.lookup_const_by_id(cond) {
            Some(SpirvConst::Bool(true)) => self.br(then_llbb),
            Some(SpirvConst::Bool(false)) => self.br(else_llbb),
            _ => {
                self.emit()
                    .branch_conditional(cond, then_llbb, else_llbb, empty())
                    .unwrap();
            }
        }
    }

    fn switch(
        &mut self,
        v: Self::Value,
        else_llbb: Self::BasicBlock,
        cases: impl ExactSizeIterator<Item = (u128, Self::BasicBlock)>,
    ) {
        fn construct_8(self_: &Builder<'_, '_>, signed: bool, v: u128) -> Operand {
            if v > u8::MAX as u128 {
                self_.fatal(format!(
                    "Switches to values above u8::MAX not supported: {v:?}"
                ))
            } else if signed {
                // this cast chain can probably be collapsed, but, whatever, be safe
                Operand::LiteralInt32(v as u8 as i8 as i32 as u32)
            } else {
                Operand::LiteralInt32(v as u8 as u32)
            }
        }
        fn construct_16(self_: &Builder<'_, '_>, signed: bool, v: u128) -> Operand {
            if v > u16::MAX as u128 {
                self_.fatal(format!(
                    "Switches to values above u16::MAX not supported: {v:?}"
                ))
            } else if signed {
                Operand::LiteralInt32(v as u16 as i16 as i32 as u32)
            } else {
                Operand::LiteralInt32(v as u16 as u32)
            }
        }
        fn construct_32(self_: &Builder<'_, '_>, _signed: bool, v: u128) -> Operand {
            if v > u32::MAX as u128 {
                self_.fatal(format!(
                    "Switches to values above u32::MAX not supported: {v:?}"
                ))
            } else {
                Operand::LiteralInt32(v as u32)
            }
        }
        fn construct_64(self_: &Builder<'_, '_>, _signed: bool, v: u128) -> Operand {
            if v > u64::MAX as u128 {
                self_.fatal(format!(
                    "Switches to values above u64::MAX not supported: {v:?}"
                ))
            } else {
                Operand::LiteralInt64(v as u64)
            }
        }
        // pass in signed into the closure to be able to unify closure types
        let (signed, construct_case) = match self.lookup_type(v.ty) {
            SpirvType::Integer(width, signed) => {
                let construct_case = match width {
                    8 => construct_8,
                    16 => construct_16,
                    32 => construct_32,
                    64 => construct_64,
                    other => self.fatal(format!(
                        "switch selector cannot have width {other} (only 8, 16, 32, and 64 bits allowed)"
                    )),
                };
                (signed, construct_case)
            }
            other => self.fatal(format!(
                "switch selector cannot have non-integer type {}",
                other.debug(v.ty, self)
            )),
        };
        let cases = cases
            .map(|(i, b)| (construct_case(self, signed, i), b))
            .collect::<Vec<_>>();
        self.emit().switch(v.def(self), else_llbb, cases).unwrap();
    }

    fn invoke(
        &mut self,
        llty: Self::Type,
        fn_attrs: Option<&CodegenFnAttrs>,
        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
        llfn: Self::Value,
        args: &[Self::Value],
        then: Self::BasicBlock,
        _catch: Self::BasicBlock,
        funclet: Option<&Self::Funclet>,
    ) -> Self::Value {
        // Exceptions don't exist, jump directly to then block
        let result = self.call(llty, fn_attrs, fn_abi, llfn, args, funclet);
        self.emit().branch(then).unwrap();
        result
    }

    fn unreachable(&mut self) {
        self.emit().unreachable().unwrap();
    }

    simple_op! {
        add, i_add,
        fold_const {
            int(a, b) => a.wrapping_add(b)
        }
    }
    simple_op! {fadd, f_add}
    simple_op! {fadd_fast, f_add} // fast=normal
    simple_op! {sub, i_sub}
    simple_op! {fsub, f_sub}
    simple_op! {fsub_fast, f_sub} // fast=normal
    simple_op! {
        mul, i_mul,
        // HACK(eddyb) `rustc_codegen_ssa` relies on `Builder` methods doing
        // on-the-fly constant-folding, for e.g. intrinsics that copy memory.
        fold_const {
            int(a, b) => a.wrapping_mul(b)
        }
    }
    simple_op! {fmul, f_mul}
    simple_op! {fmul_fast, f_mul} // fast=normal
    simple_op! {udiv, u_div}
    // Note: exactudiv is UB when there's a remainder, so it's valid to implement as a normal div.
    // TODO: Can we take advantage of the UB and emit something else?
    simple_op! {exactudiv, u_div}
    simple_op! {sdiv, s_div}
    // Same note and TODO as exactudiv
    simple_op! {exactsdiv, s_div}
    simple_op! {fdiv, f_div}
    simple_op! {fdiv_fast, f_div} // fast=normal
    simple_op! {urem, u_mod}
    simple_op! {srem, s_rem}
    simple_op! {frem, f_rem}
    simple_op! {frem_fast, f_rem} // fast=normal
    simple_op_unchecked_type! {shl, shift_left_logical}
    simple_op_unchecked_type! {lshr, shift_right_logical}
    simple_op_unchecked_type! {ashr, shift_right_arithmetic}
    simple_op! {unchecked_sadd, i_add} // already unchecked by default
    simple_op! {unchecked_uadd, i_add} // already unchecked by default
    simple_op! {unchecked_ssub, i_sub} // already unchecked by default
    simple_op! {unchecked_usub, i_sub} // already unchecked by default
    simple_op! {unchecked_smul, i_mul} // already unchecked by default
    simple_op! {unchecked_umul, i_mul} // already unchecked by default
    simple_uni_op! {neg, s_negate}
    simple_uni_op! {fneg, f_negate}

    fn and(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
        assert_ty_eq!(self, lhs.ty, rhs.ty);
        let ty = lhs.ty;
        match self.lookup_type(ty) {
            SpirvType::Integer(_, _) => {
                self.emit()
                    .bitwise_and(ty, None, lhs.def(self), rhs.def(self))
            }
            SpirvType::Bool => self
                .emit()
                .logical_and(ty, None, lhs.def(self), rhs.def(self)),
            o => self.fatal(format!(
                "and() not implemented for type {}",
                o.debug(ty, self)
            )),
        }
        .unwrap()
        .with_type(ty)
    }
    fn or(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
        assert_ty_eq!(self, lhs.ty, rhs.ty);
        let ty = lhs.ty;
        match self.lookup_type(ty) {
            SpirvType::Integer(_, _) => {
                self.emit()
                    .bitwise_or(ty, None, lhs.def(self), rhs.def(self))
            }
            SpirvType::Bool => self
                .emit()
                .logical_or(ty, None, lhs.def(self), rhs.def(self)),
            o => self.fatal(format!(
                "or() not implemented for type {}",
                o.debug(ty, self)
            )),
        }
        .unwrap()
        .with_type(ty)
    }
    fn xor(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
        assert_ty_eq!(self, lhs.ty, rhs.ty);
        let ty = lhs.ty;
        match self.lookup_type(ty) {
            SpirvType::Integer(_, _) => {
                self.emit()
                    .bitwise_xor(ty, None, lhs.def(self), rhs.def(self))
            }
            SpirvType::Bool => {
                self.emit()
                    .logical_not_equal(ty, None, lhs.def(self), rhs.def(self))
            }
            o => self.fatal(format!(
                "xor() not implemented for type {}",
                o.debug(ty, self)
            )),
        }
        .unwrap()
        .with_type(ty)
    }
    fn not(&mut self, val: Self::Value) -> Self::Value {
        match self.lookup_type(val.ty) {
            SpirvType::Integer(_, _) => self.emit().not(val.ty, None, val.def(self)),
            SpirvType::Bool => {
                let true_ = self.constant_bool(self.span(), true);
                // intel-compute-runtime doesn't like OpLogicalNot
                self.emit()
                    .logical_not_equal(val.ty, None, val.def(self), true_.def(self))
            }
            o => self.fatal(format!(
                "not() not implemented for type {}",
                o.debug(val.ty, self)
            )),
        }
        .unwrap()
        .with_type(val.ty)
    }

    fn checked_binop(
        &mut self,
        oop: OverflowOp,
        _ty: Ty<'_>,
        lhs: Self::Value,
        rhs: Self::Value,
    ) -> (Self::Value, Self::Value) {
        // NOTE(eddyb) this needs to be `undef`, not `false`/`true`, because
        // we don't want the user's boolean constants to keep the zombie alive.
        let bool = SpirvType::Bool.def(self.span(), self);
        let overflowed = self.undef(bool);
        let result = match oop {
            OverflowOp::Add => (self.add(lhs, rhs), overflowed),
            OverflowOp::Sub => (self.sub(lhs, rhs), overflowed),
            OverflowOp::Mul => (self.mul(lhs, rhs), overflowed),
        };
        self.zombie(
            result.1.def(self),
            match oop {
                OverflowOp::Add => "checked add is not supported yet",
                OverflowOp::Sub => "checked sub is not supported yet",
                OverflowOp::Mul => "checked mul is not supported yet",
            },
        );
        result
    }

    // rustc has the concept of an immediate vs. memory type - bools are compiled to LLVM bools as
    // immediates, but if they're behind a pointer, they're compiled to u8. The reason for this is
    // because LLVM is bad at bools behind pointers (something something u1 bitmasking on load).
    //
    // SPIR-V allows bools behind *some* pointers, and disallows others - specifically, it allows
    // bools behind the storage classes Workgroup, CrossWorkgroup, Private, Function, Input, and
    // Output. In other words, "For stuff the CPU can't see, bools are OK. For stuff the CPU *can*
    // see, no bools allowed". So, we always compile rust bools to SPIR-V bools instead of u8 as
    // rustc does, even if they're behind a pointer, and error if bools are in an interface (the
    // user should choose u8, u32, or something else instead). That means that immediate types and
    // memory types are the same, and no conversion needs to happen here.
    fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
        val
    }

    fn to_immediate_scalar(&mut self, val: Self::Value, _scalar: Scalar) -> Self::Value {
        val
    }

    fn alloca(&mut self, ty: Self::Type, _align: Align) -> Self::Value {
        let ptr_ty = self.type_ptr_to(ty);
        // "All OpVariable instructions in a function must be the first instructions in the first block."
        let mut builder = self.emit();
        builder.select_block(Some(0)).unwrap();
        let index = {
            let block = &builder.module_ref().functions[builder.selected_function().unwrap()]
                .blocks[builder.selected_block().unwrap()];
            block
                .instructions
                .iter()
                .enumerate()
                .find_map(|(index, inst)| {
                    if inst.class.opcode != Op::Variable {
                        Some(InsertPoint::FromBegin(index))
                    } else {
                        None
                    }
                })
                .unwrap_or(InsertPoint::End)
        };
        // TODO: rspirv doesn't have insert_variable function
        let result_id = builder.id();
        let inst = Instruction::new(
            Op::Variable,
            Some(ptr_ty),
            Some(result_id),
            vec![Operand::StorageClass(StorageClass::Function)],
        );
        builder.insert_into_block(index, inst).unwrap();
        result_id.with_type(ptr_ty)
    }

    fn byte_array_alloca(&mut self, _len: Self::Value, _align: Align) -> Self::Value {
        self.fatal("array alloca not supported yet")
    }

    fn load(&mut self, ty: Self::Type, ptr: Self::Value, _align: Align) -> Self::Value {
        let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, ty);
        let loaded_val = ptr.const_fold_load(self).unwrap_or_else(|| {
            self.emit()
                .load(access_ty, None, ptr.def(self), None, empty())
                .unwrap()
                .with_type(access_ty)
        });
        self.bitcast(loaded_val, ty)
    }

    fn volatile_load(&mut self, ty: Self::Type, ptr: Self::Value) -> Self::Value {
        // TODO: Implement this
        let result = self.load(ty, ptr, Align::from_bytes(0).unwrap());
        self.zombie(result.def(self), "volatile load is not supported yet");
        result
    }

    fn atomic_load(
        &mut self,
        ty: Self::Type,
        ptr: Self::Value,
        order: AtomicOrdering,
        _size: Size,
    ) -> Self::Value {
        let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, ty);

        // TODO: Default to device scope
        let memory = self.constant_u32(self.span(), Scope::Device as u32);
        let semantics = self.ordering_to_semantics_def(order);
        let result = self
            .emit()
            .atomic_load(
                access_ty,
                None,
                ptr.def(self),
                memory.def(self),
                semantics.def(self),
            )
            .unwrap()
            .with_type(access_ty);
        self.validate_atomic(access_ty, result.def(self));
        self.bitcast(result, ty)
    }

    fn load_operand(
        &mut self,
        place: PlaceRef<'tcx, Self::Value>,
    ) -> OperandRef<'tcx, Self::Value> {
        if place.layout.is_zst() {
            return OperandRef::zero_sized(place.layout);
        }

        let val = if let Some(llextra) = place.llextra {
            OperandValue::Ref(place.llval, Some(llextra), place.align)
        } else if self.cx.is_backend_immediate(place.layout) {
            let llval = self.load(
                place.layout.spirv_type(self.span(), self),
                place.llval,
                place.align,
            );
            OperandValue::Immediate(self.to_immediate(llval, place.layout))
        } else if let Abi::ScalarPair(a, b) = place.layout.abi {
            let b_offset = a
                .primitive()
                .size(self)
                .align_to(b.primitive().align(self).abi);

            let pair_ty = place.layout.spirv_type(self.span(), self);
            let mut load = |i, scalar: Scalar, align| {
                let llptr = self.struct_gep(pair_ty, place.llval, i as u64);
                let load = self.load(
                    self.scalar_pair_element_backend_type(place.layout, i, false),
                    llptr,
                    align,
                );
                self.to_immediate_scalar(load, scalar)
            };

            OperandValue::Pair(
                load(0, a, place.align),
                load(1, b, place.align.restrict_for_offset(b_offset)),
            )
        } else {
            OperandValue::Ref(place.llval, None, place.align)
        };
        OperandRef {
            val,
            layout: place.layout,
        }
    }

    /// Called for `Rvalue::Repeat` when the elem is neither a ZST nor optimizable using memset.
    fn write_operand_repeatedly(
        &mut self,
        cg_elem: OperandRef<'tcx, Self::Value>,
        count: u64,
        dest: PlaceRef<'tcx, Self::Value>,
    ) {
        let zero = self.const_usize(0);
        let start = dest.project_index(self, zero).llval;

        let elem_layout = dest.layout.field(self.cx(), 0);
        let elem_ty = elem_layout.spirv_type(self.span(), self);
        let align = dest.align.restrict_for_offset(elem_layout.size);

        for i in 0..count {
            let current = self.inbounds_gep(elem_ty, start, &[self.const_usize(i)]);
            cg_elem.val.store(
                self,
                PlaceRef::new_sized_aligned(current, cg_elem.layout, align),
            );
        }
    }

    fn range_metadata(&mut self, _load: Self::Value, _range: WrappingRange) {
        // ignore
    }

    fn nonnull_metadata(&mut self, _load: Self::Value) {
        // ignore
    }

    fn store(&mut self, val: Self::Value, ptr: Self::Value, _align: Align) -> Self::Value {
        let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, val.ty);
        let val = self.bitcast(val, access_ty);

        self.emit()
            .store(ptr.def(self), val.def(self), None, empty())
            .unwrap();
        // FIXME(eddyb) this is meant to be a handle the store instruction itself.
        val
    }

    fn store_with_flags(
        &mut self,
        val: Self::Value,
        ptr: Self::Value,
        align: Align,
        flags: MemFlags,
    ) -> Self::Value {
        if flags != MemFlags::empty() {
            self.err(format!("store_with_flags is not supported yet: {flags:?}"));
        }
        self.store(val, ptr, align)
    }

    fn atomic_store(
        &mut self,
        val: Self::Value,
        ptr: Self::Value,
        order: AtomicOrdering,
        _size: Size,
    ) {
        let (ptr, access_ty) = self.adjust_pointer_for_typed_access(ptr, val.ty);
        let val = self.bitcast(val, access_ty);

        // TODO: Default to device scope
        let memory = self.constant_u32(self.span(), Scope::Device as u32);
        let semantics = self.ordering_to_semantics_def(order);
        self.validate_atomic(val.ty, ptr.def(self));
        self.emit()
            .atomic_store(
                ptr.def(self),
                memory.def(self),
                semantics.def(self),
                val.def(self),
            )
            .unwrap();
    }

    fn gep(&mut self, ty: Self::Type, ptr: Self::Value, indices: &[Self::Value]) -> Self::Value {
        self.gep_help(ty, ptr, indices, false)
    }

    fn inbounds_gep(
        &mut self,
        ty: Self::Type,
        ptr: Self::Value,
        indices: &[Self::Value],
    ) -> Self::Value {
        self.gep_help(ty, ptr, indices, true)
    }

    fn struct_gep(&mut self, ty: Self::Type, ptr: Self::Value, idx: u64) -> Self::Value {
        let (offset, result_pointee_type) = match self.lookup_type(ty) {
            SpirvType::Adt {
                field_offsets,
                field_types,
                ..
            } => (field_offsets[idx as usize], field_types[idx as usize]),
            SpirvType::Array { element, .. }
            | SpirvType::RuntimeArray { element, .. }
            | SpirvType::Vector { element, .. }
            | SpirvType::Matrix { element, .. } => (
                self.lookup_type(element).sizeof(self).unwrap() * idx,
                element,
            ),
            SpirvType::InterfaceBlock { inner_type } => {
                assert_eq!(idx, 0);
                (Size::ZERO, inner_type)
            }
            other => self.fatal(format!(
                "struct_gep not on struct, array, or vector type: {other:?}, index {idx}"
            )),
        };
        let result_type = self.type_ptr_to(result_pointee_type);

        // Special-case field accesses through a `pointercast`, to accesss the
        // right field in the original type, for the `Logical` addressing model.
        let ptr = ptr.strip_ptrcasts();
        let original_pointee_ty = match self.lookup_type(ptr.ty) {
            SpirvType::Pointer { pointee } => pointee,
            other => self.fatal(format!("struct_gep called on non-pointer type: {other:?}")),
        };
        if let Some((indices, _)) = self.recover_access_chain_from_offset(
            original_pointee_ty,
            offset,
            self.lookup_type(result_pointee_type).sizeof(self),
            Some(result_pointee_type),
        ) {
            let original_ptr = ptr.def(self);
            let indices = indices
                .into_iter()
                .map(|idx| self.constant_u32(self.span(), idx).def(self))
                .collect::<Vec<_>>();
            return self
                .emit()
                .access_chain(result_type, None, original_ptr, indices)
                .unwrap()
                .with_type(result_type);
        }

        // FIXME(eddyb) can we even get to this point, with valid SPIR-V?

        // HACK(eddyb) temporary workaround for untyped pointers upstream.
        // FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
        let ptr = self.pointercast(ptr, self.type_ptr_to(ty));

        // Important! LLVM, and therefore intel-compute-runtime, require the `getelementptr` instruction (and therefore
        // OpAccessChain) on structs to be a constant i32. Not i64! i32.
        if idx > u32::MAX as u64 {
            self.fatal("struct_gep bigger than u32::MAX");
        }
        let index_const = self.constant_u32(self.span(), idx as u32).def(self);
        self.emit()
            .access_chain(
                result_type,
                None,
                ptr.def(self),
                [index_const].iter().cloned(),
            )
            .unwrap()
            .with_type(result_type)
    }

    // intcast has the logic for dealing with bools, so use that
    fn trunc(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        self.intcast(val, dest_ty, false)
    }
    fn sext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        self.intcast(val, dest_ty, true)
    }
    fn fptoui_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        self.fptoint_sat(false, val, dest_ty)
    }

    fn fptosi_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        self.fptoint_sat(true, val, dest_ty)
    }

    fn fptoui(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        if val.ty == dest_ty {
            val
        } else {
            self.emit()
                .convert_f_to_u(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty)
        }
    }

    fn fptosi(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        if val.ty == dest_ty {
            val
        } else {
            self.emit()
                .convert_f_to_s(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty)
        }
    }

    fn uitofp(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        if val.ty == dest_ty {
            val
        } else {
            self.emit()
                .convert_u_to_f(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty)
        }
    }

    fn sitofp(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        if val.ty == dest_ty {
            val
        } else {
            self.emit()
                .convert_s_to_f(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty)
        }
    }

    fn fptrunc(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        if val.ty == dest_ty {
            val
        } else {
            self.emit()
                .f_convert(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty)
        }
    }

    fn fpext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        if val.ty == dest_ty {
            val
        } else {
            self.emit()
                .f_convert(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty)
        }
    }

    fn ptrtoint(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        match self.lookup_type(val.ty) {
            SpirvType::Pointer { .. } => (),
            other => self.fatal(format!(
                "ptrtoint called on non-pointer source type: {other:?}"
            )),
        }
        if val.ty == dest_ty {
            val
        } else {
            let result = self
                .emit()
                .convert_ptr_to_u(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty);
            self.zombie_convert_ptr_to_u(result.def(self));
            result
        }
    }

    fn inttoptr(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        match self.lookup_type(dest_ty) {
            SpirvType::Pointer { .. } => (),
            other => self.fatal(format!(
                "inttoptr called on non-pointer dest type: {other:?}"
            )),
        }
        if val.ty == dest_ty {
            val
        } else {
            let result = self
                .emit()
                .convert_u_to_ptr(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty);
            self.zombie_convert_u_to_ptr(result.def(self));
            result
        }
    }

    fn bitcast(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        if val.ty == dest_ty {
            val
        } else {
            let val_ty_kind = self.lookup_type(val.ty);
            let dest_ty_kind = self.lookup_type(dest_ty);

            // HACK(eddyb) account for bitcasts from/to aggregates not being legal
            // in SPIR-V, but still being used to paper over untyped pointers,
            // by unpacking/repacking newtype-shaped aggregates as-needed.
            let unpack_newtype = |ty, kind| {
                if !matches!(kind, SpirvType::Adt { .. } | SpirvType::Array { .. }) {
                    return None;
                }
                let size = kind.sizeof(self)?;
                let mut leaf_ty = ty;

                // FIXME(eddyb) this isn't efficient, `recover_access_chain_from_offset`
                // could instead be doing all the extra digging itself.
                let mut indices = SmallVec::<[_; 8]>::new();
                while let Some((inner_indices, inner_ty)) =
                    self.recover_access_chain_from_offset(leaf_ty, Size::ZERO, Some(size), None)
                {
                    indices.extend(inner_indices);
                    leaf_ty = inner_ty;
                }

                (!indices.is_empty()).then_some((indices, leaf_ty))
            };
            // Unpack input newtypes, and bitcast the leaf inside, instead.
            if let Some((indices, in_leaf_ty)) = unpack_newtype(val.ty, val_ty_kind) {
                let in_leaf = self
                    .emit()
                    .composite_extract(in_leaf_ty, None, val.def(self), indices)
                    .unwrap()
                    .with_type(in_leaf_ty);
                return self.bitcast(in_leaf, dest_ty);
            }
            // Repack output newtypes, after bitcasting the leaf inside, instead.
            if let Some((indices, out_leaf_ty)) = unpack_newtype(dest_ty, dest_ty_kind) {
                let out_leaf = self.bitcast(val, out_leaf_ty);
                let out_agg_undef = self.undef(dest_ty);
                return self
                    .emit()
                    .composite_insert(
                        dest_ty,
                        None,
                        out_leaf.def(self),
                        out_agg_undef.def(self),
                        indices,
                    )
                    .unwrap()
                    .with_type(dest_ty);
            }

            let val_is_ptr = matches!(val_ty_kind, SpirvType::Pointer { .. });
            let dest_is_ptr = matches!(dest_ty_kind, SpirvType::Pointer { .. });

            // Reuse the pointer-specific logic in `pointercast` for `*T -> *U`.
            if val_is_ptr && dest_is_ptr {
                return self.pointercast(val, dest_ty);
            }

            let result = self
                .emit()
                .bitcast(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty);

            if val_is_ptr || dest_is_ptr {
                self.zombie(
                    result.def(self),
                    &format!(
                        "cannot cast between pointer and non-pointer types\
                         \nfrom `{}`\
                         \n  to `{}`",
                        self.debug_type(val.ty),
                        self.debug_type(dest_ty)
                    ),
                );
            }

            result
        }
    }

    fn intcast(&mut self, val: Self::Value, dest_ty: Self::Type, is_signed: bool) -> Self::Value {
        if val.ty == dest_ty {
            // I guess?
            return val;
        }
        match (self.lookup_type(val.ty), self.lookup_type(dest_ty)) {
            // sign change
            (
                SpirvType::Integer(val_width, val_signedness),
                SpirvType::Integer(dest_width, dest_signedness),
            ) if val_width == dest_width && val_signedness != dest_signedness => self
                .emit()
                .bitcast(dest_ty, None, val.def(self))
                .unwrap()
                .with_type(dest_ty),
            // width change, and optional sign change
            (SpirvType::Integer(_, _), SpirvType::Integer(_, dest_signedness)) => {
                // spir-v spec doesn't seem to say that signedness needs to match the operands, only that the signedness
                // of the destination type must match the instruction's signedness.
                if dest_signedness {
                    self.emit().s_convert(dest_ty, None, val.def(self))
                } else {
                    self.emit().u_convert(dest_ty, None, val.def(self))
                }
                .unwrap()
                .with_type(dest_ty)
            }
            // bools are ints in llvm, so we have to implement this here
            (SpirvType::Bool, SpirvType::Integer(_, _)) => {
                // spir-v doesn't have a direct conversion instruction
                let if_true = self.constant_int(dest_ty, 1);
                let if_false = self.constant_int(dest_ty, 0);
                self.emit()
                    .select(
                        dest_ty,
                        None,
                        val.def(self),
                        if_true.def(self),
                        if_false.def(self),
                    )
                    .unwrap()
                    .with_type(dest_ty)
            }
            (SpirvType::Integer(_, _), SpirvType::Bool) => {
                // spir-v doesn't have a direct conversion instruction, glslang emits OpINotEqual
                let zero = self.constant_int(val.ty, 0);
                self.emit()
                    .i_not_equal(dest_ty, None, val.def(self), zero.def(self))
                    .unwrap()
                    .with_type(dest_ty)
            }
            (val_ty, dest_ty_spv) => self.fatal(format!(
                "TODO: intcast not implemented yet: val={val:?} val.ty={val_ty:?} dest_ty={dest_ty_spv:?} is_signed={is_signed}"
            )),
        }
    }

    fn pointercast(&mut self, ptr: Self::Value, dest_ty: Self::Type) -> Self::Value {
        // HACK(eddyb) reuse the special-casing in `const_bitcast`, which relies
        // on adding a pointer type to an untyped pointer (to some const data).
        if let SpirvValueKind::IllegalConst(_) = ptr.kind {
            return self.const_bitcast(ptr, dest_ty);
        }

        // Strip a previous `pointercast`, to reveal the original pointer type.
        let ptr = ptr.strip_ptrcasts();

        let ptr_pointee = match self.lookup_type(ptr.ty) {
            SpirvType::Pointer { pointee } => pointee,
            other => self.fatal(format!(
                "pointercast called on non-pointer source type: {other:?}"
            )),
        };
        let dest_pointee = match self.lookup_type(dest_ty) {
            SpirvType::Pointer { pointee } => pointee,
            other => self.fatal(format!(
                "pointercast called on non-pointer dest type: {other:?}"
            )),
        };
        if ptr.ty == dest_ty {
            ptr
        } else if let Some((indices, _)) = self.recover_access_chain_from_offset(
            ptr_pointee,
            Size::ZERO,
            self.lookup_type(dest_pointee).sizeof(self),
            Some(dest_pointee),
        ) {
            let indices = indices
                .into_iter()
                .map(|idx| self.constant_u32(self.span(), idx).def(self))
                .collect::<Vec<_>>();
            self.emit()
                .access_chain(dest_ty, None, ptr.def(self), indices)
                .unwrap()
                .with_type(dest_ty)
        } else {
            // Defer the cast so that it has a chance to be avoided.
            let original_ptr = ptr.def(self);
            SpirvValue {
                kind: SpirvValueKind::LogicalPtrCast {
                    original_ptr,
                    original_ptr_ty: ptr.ty,
                    bitcast_result_id: self.emit().bitcast(dest_ty, None, original_ptr).unwrap(),
                },
                ty: dest_ty,
            }
        }
    }

    fn icmp(&mut self, op: IntPredicate, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
        // Note: the signedness of the opcode doesn't have to match the signedness of the operands.
        use IntPredicate::*;
        assert_ty_eq!(self, lhs.ty, rhs.ty);
        let b = SpirvType::Bool.def(self.span(), self);
        match self.lookup_type(lhs.ty) {
            SpirvType::Integer(_, _) => match op {
                IntEQ => self.emit().i_equal(b, None, lhs.def(self), rhs.def(self)),
                IntNE => self
                    .emit()
                    .i_not_equal(b, None, lhs.def(self), rhs.def(self)),
                IntUGT => self
                    .emit()
                    .u_greater_than(b, None, lhs.def(self), rhs.def(self)),
                IntUGE => self
                    .emit()
                    .u_greater_than_equal(b, None, lhs.def(self), rhs.def(self)),
                IntULT => self
                    .emit()
                    .u_less_than(b, None, lhs.def(self), rhs.def(self)),
                IntULE => self
                    .emit()
                    .u_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
                IntSGT => self
                    .emit()
                    .s_greater_than(b, None, lhs.def(self), rhs.def(self)),
                IntSGE => self
                    .emit()
                    .s_greater_than_equal(b, None, lhs.def(self), rhs.def(self)),
                IntSLT => self
                    .emit()
                    .s_less_than(b, None, lhs.def(self), rhs.def(self)),
                IntSLE => self
                    .emit()
                    .s_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
            },
            SpirvType::Pointer { .. } => match op {
                IntEQ => {
                    if self.emit().version().unwrap() > (1, 3) {
                        let ptr_equal =
                            self.emit().ptr_equal(b, None, lhs.def(self), rhs.def(self));

                        ptr_equal.map(|result| {
                            self.zombie_ptr_equal(result, "OpPtrEqual");
                            result
                        })
                    } else {
                        let int_ty = self.type_usize();
                        let lhs = self
                            .emit()
                            .convert_ptr_to_u(int_ty, None, lhs.def(self))
                            .unwrap();
                        self.zombie_convert_ptr_to_u(lhs);
                        let rhs = self
                            .emit()
                            .convert_ptr_to_u(int_ty, None, rhs.def(self))
                            .unwrap();
                        self.zombie_convert_ptr_to_u(rhs);
                        self.emit().i_not_equal(b, None, lhs, rhs)
                    }
                }
                IntNE => {
                    if self.emit().version().unwrap() > (1, 3) {
                        self.emit()
                            .ptr_not_equal(b, None, lhs.def(self), rhs.def(self))
                            .map(|result| {
                                self.zombie_ptr_equal(result, "OpPtrNotEqual");
                                result
                            })
                    } else {
                        let int_ty = self.type_usize();
                        let lhs = self
                            .emit()
                            .convert_ptr_to_u(int_ty, None, lhs.def(self))
                            .unwrap();
                        self.zombie_convert_ptr_to_u(lhs);
                        let rhs = self
                            .emit()
                            .convert_ptr_to_u(int_ty, None, rhs.def(self))
                            .unwrap();
                        self.zombie_convert_ptr_to_u(rhs);
                        self.emit().i_not_equal(b, None, lhs, rhs)
                    }
                }
                IntUGT => {
                    let int_ty = self.type_usize();
                    let lhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, lhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(lhs);
                    let rhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, rhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(rhs);
                    self.emit().u_greater_than(b, None, lhs, rhs)
                }
                IntUGE => {
                    let int_ty = self.type_usize();
                    let lhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, lhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(lhs);
                    let rhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, rhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(rhs);
                    self.emit().u_greater_than_equal(b, None, lhs, rhs)
                }
                IntULT => {
                    let int_ty = self.type_usize();
                    let lhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, lhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(lhs);
                    let rhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, rhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(rhs);
                    self.emit().u_less_than(b, None, lhs, rhs)
                }
                IntULE => {
                    let int_ty = self.type_usize();
                    let lhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, lhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(lhs);
                    let rhs = self
                        .emit()
                        .convert_ptr_to_u(int_ty, None, rhs.def(self))
                        .unwrap();
                    self.zombie_convert_ptr_to_u(rhs);
                    self.emit().u_less_than_equal(b, None, lhs, rhs)
                }
                IntSGT => self.fatal("TODO: pointer operator IntSGT not implemented yet"),
                IntSGE => self.fatal("TODO: pointer operator IntSGE not implemented yet"),
                IntSLT => self.fatal("TODO: pointer operator IntSLT not implemented yet"),
                IntSLE => self.fatal("TODO: pointer operator IntSLE not implemented yet"),
            },
            SpirvType::Bool => match op {
                IntEQ => self
                    .emit()
                    .logical_equal(b, None, lhs.def(self), rhs.def(self)),
                IntNE => self
                    .emit()
                    .logical_not_equal(b, None, lhs.def(self), rhs.def(self)),
                // x > y  =>  x && !y
                IntUGT => {
                    // intel-compute-runtime doesn't like OpLogicalNot
                    let true_ = self.constant_bool(self.span(), true);
                    let rhs = self
                        .emit()
                        .logical_not_equal(b, None, rhs.def(self), true_.def(self))
                        .unwrap();
                    self.emit().logical_and(b, None, lhs.def(self), rhs)
                }
                // x >= y  =>  x || !y
                IntUGE => {
                    let true_ = self.constant_bool(self.span(), true);
                    let rhs = self
                        .emit()
                        .logical_not_equal(b, None, rhs.def(self), true_.def(self))
                        .unwrap();
                    self.emit().logical_or(b, None, lhs.def(self), rhs)
                }
                // x < y  =>  !x && y
                IntULE => {
                    let true_ = self.constant_bool(self.span(), true);
                    let lhs = self
                        .emit()
                        .logical_not_equal(b, None, lhs.def(self), true_.def(self))
                        .unwrap();
                    self.emit().logical_and(b, None, lhs, rhs.def(self))
                }
                // x <= y  =>  !x || y
                IntULT => {
                    let true_ = self.constant_bool(self.span(), true);
                    let lhs = self
                        .emit()
                        .logical_not_equal(b, None, lhs.def(self), true_.def(self))
                        .unwrap();
                    self.emit().logical_or(b, None, lhs, rhs.def(self))
                }
                IntSGT => self.fatal("TODO: boolean operator IntSGT not implemented yet"),
                IntSGE => self.fatal("TODO: boolean operator IntSGE not implemented yet"),
                IntSLT => self.fatal("TODO: boolean operator IntSLT not implemented yet"),
                IntSLE => self.fatal("TODO: boolean operator IntSLE not implemented yet"),
            },
            other => self.fatal(format!(
                "Int comparison not implemented on {}",
                other.debug(lhs.ty, self)
            )),
        }
        .unwrap()
        .with_type(b)
    }

    fn fcmp(&mut self, op: RealPredicate, lhs: Self::Value, rhs: Self::Value) -> Self::Value {
        use RealPredicate::*;
        assert_ty_eq!(self, lhs.ty, rhs.ty);
        let b = SpirvType::Bool.def(self.span(), self);
        match op {
            RealPredicateFalse => return self.cx.constant_bool(self.span(), false),
            RealPredicateTrue => return self.cx.constant_bool(self.span(), true),
            RealOEQ => self
                .emit()
                .f_ord_equal(b, None, lhs.def(self), rhs.def(self)),
            RealOGT => self
                .emit()
                .f_ord_greater_than(b, None, lhs.def(self), rhs.def(self)),
            RealOGE => self
                .emit()
                .f_ord_greater_than_equal(b, None, lhs.def(self), rhs.def(self)),
            RealOLT => self
                .emit()
                .f_ord_less_than(b, None, lhs.def(self), rhs.def(self)),
            RealOLE => self
                .emit()
                .f_ord_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
            RealONE => self
                .emit()
                .f_ord_not_equal(b, None, lhs.def(self), rhs.def(self)),
            RealORD => self.emit().ordered(b, None, lhs.def(self), rhs.def(self)),
            RealUNO => self.emit().unordered(b, None, lhs.def(self), rhs.def(self)),
            RealUEQ => self
                .emit()
                .f_unord_equal(b, None, lhs.def(self), rhs.def(self)),
            RealUGT => self
                .emit()
                .f_unord_greater_than(b, None, lhs.def(self), rhs.def(self)),
            RealUGE => {
                self.emit()
                    .f_unord_greater_than_equal(b, None, lhs.def(self), rhs.def(self))
            }
            RealULT => self
                .emit()
                .f_unord_less_than(b, None, lhs.def(self), rhs.def(self)),
            RealULE => self
                .emit()
                .f_unord_less_than_equal(b, None, lhs.def(self), rhs.def(self)),
            RealUNE => self
                .emit()
                .f_unord_not_equal(b, None, lhs.def(self), rhs.def(self)),
        }
        .unwrap()
        .with_type(b)
    }

    fn memcpy(
        &mut self,
        dst: Self::Value,
        _dst_align: Align,
        src: Self::Value,
        _src_align: Align,
        size: Self::Value,
        flags: MemFlags,
    ) {
        if flags != MemFlags::empty() {
            self.err(format!(
                "memcpy with mem flags is not supported yet: {flags:?}"
            ));
        }
        let const_size = self.builder.lookup_const_u64(size).map(Size::from_bytes);
        if const_size == Some(Size::ZERO) {
            // Nothing to do!
            return;
        }

        let typed_copy_dst_src = const_size.and_then(|const_size| {
            let dst_adj = self.adjust_pointer_for_sized_access(dst, const_size);
            let src_adj = self.adjust_pointer_for_sized_access(src, const_size);
            match (dst_adj, src_adj) {
                // HACK(eddyb) fill in missing `dst`/`src` with the other side.
                (Some((dst, access_ty)), None) => {
                    Some((dst, self.pointercast(src, self.type_ptr_to(access_ty))))
                }
                (None, Some((src, access_ty))) => {
                    Some((self.pointercast(dst, self.type_ptr_to(access_ty)), src))
                }
                (Some((dst, dst_access_ty)), Some((src, src_access_ty)))
                    if dst_access_ty == src_access_ty =>
                {
                    Some((dst, src))
                }
                (None, None) | (Some(_), Some(_)) => None,
            }
        });

        if let Some((dst, src)) = typed_copy_dst_src {
            if let Some(const_value) = src.const_fold_load(self) {
                self.store(const_value, dst, Align::from_bytes(0).unwrap());
            } else {
                self.emit()
                    .copy_memory(dst.def(self), src.def(self), None, None, empty())
                    .unwrap();
            }
        } else {
            self.emit()
                .copy_memory_sized(
                    dst.def(self),
                    src.def(self),
                    size.def(self),
                    None,
                    None,
                    empty(),
                )
                .unwrap();
            self.zombie(dst.def(self), "cannot memcpy dynamically sized data");
        }
    }

    fn memmove(
        &mut self,
        dst: Self::Value,
        dst_align: Align,
        src: Self::Value,
        src_align: Align,
        size: Self::Value,
        flags: MemFlags,
    ) {
        self.memcpy(dst, dst_align, src, src_align, size, flags);
    }

    fn memset(
        &mut self,
        ptr: Self::Value,
        fill_byte: Self::Value,
        size: Self::Value,
        _align: Align,
        flags: MemFlags,
    ) {
        if flags != MemFlags::empty() {
            self.err(format!(
                "memset with mem flags is not supported yet: {flags:?}"
            ));
        }
        let elem_ty = match self.lookup_type(ptr.ty) {
            SpirvType::Pointer { pointee } => pointee,
            _ => self.fatal(format!(
                "memset called on non-pointer type: {}",
                self.debug_type(ptr.ty)
            )),
        };
        let elem_ty_spv = self.lookup_type(elem_ty);
        let pat = match self.builder.lookup_const_u64(fill_byte) {
            Some(fill_byte) => self.memset_const_pattern(&elem_ty_spv, fill_byte as u8),
            None => self.memset_dynamic_pattern(&elem_ty_spv, fill_byte.def(self)),
        }
        .with_type(elem_ty);
        match self.builder.lookup_const_u64(size) {
            Some(size) => self.memset_constant_size(ptr, pat, size),
            None => self.memset_dynamic_size(ptr, pat, size),
        }
    }

    fn select(
        &mut self,
        cond: Self::Value,
        then_val: Self::Value,
        else_val: Self::Value,
    ) -> Self::Value {
        assert_ty_eq!(self, then_val.ty, else_val.ty);
        let result_type = then_val.ty;
        self.emit()
            .select(
                result_type,
                None,
                cond.def(self),
                then_val.def(self),
                else_val.def(self),
            )
            .unwrap()
            .with_type(result_type)
    }

    fn va_arg(&mut self, _list: Self::Value, _ty: Self::Type) -> Self::Value {
        todo!()
    }

    fn extract_element(&mut self, vec: Self::Value, idx: Self::Value) -> Self::Value {
        let result_type = match self.lookup_type(vec.ty) {
            SpirvType::Vector { element, .. } => element,
            other => self.fatal(format!("extract_element not implemented on type {other:?}")),
        };
        match self.builder.lookup_const_u64(idx) {
            Some(const_index) => self.emit().composite_extract(
                result_type,
                None,
                vec.def(self),
                [const_index as u32].iter().cloned(),
            ),
            None => {
                self.emit()
                    .vector_extract_dynamic(result_type, None, vec.def(self), idx.def(self))
            }
        }
        .unwrap()
        .with_type(result_type)
    }

    fn vector_splat(&mut self, num_elts: usize, elt: Self::Value) -> Self::Value {
        let result_type = SpirvType::Vector {
            element: elt.ty,
            count: num_elts as u32,
        }
        .def(self.span(), self);
        if self.builder.lookup_const(elt).is_some() {
            self.constant_composite(result_type, iter::repeat(elt.def(self)).take(num_elts))
        } else {
            self.emit()
                .composite_construct(
                    result_type,
                    None,
                    iter::repeat(elt.def(self)).take(num_elts),
                )
                .unwrap()
                .with_type(result_type)
        }
    }

    fn extract_value(&mut self, agg_val: Self::Value, idx: u64) -> Self::Value {
        let result_type = match self.lookup_type(agg_val.ty) {
            SpirvType::Adt { field_types, .. } => field_types[idx as usize],
            SpirvType::Array { element, .. }
            | SpirvType::Vector { element, .. }
            | SpirvType::Matrix { element, .. } => element,
            other => self.fatal(format!(
                "extract_value not implemented on type {}",
                other.debug(agg_val.ty, self)
            )),
        };
        self.emit()
            .composite_extract(
                result_type,
                None,
                agg_val.def(self),
                [idx as u32].iter().cloned(),
            )
            .unwrap()
            .with_type(result_type)
    }

    fn insert_value(&mut self, agg_val: Self::Value, elt: Self::Value, idx: u64) -> Self::Value {
        let field_type = match self.lookup_type(agg_val.ty) {
            SpirvType::Adt { field_types, .. } => field_types[idx as usize],
            other => self.fatal(format!("insert_value not implemented on type {other:?}")),
        };

        // HACK(eddyb) temporary workaround for untyped pointers upstream.
        // FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
        let elt = self.bitcast(elt, field_type);

        self.emit()
            .composite_insert(
                agg_val.ty,
                None,
                elt.def(self),
                agg_val.def(self),
                [idx as u32].iter().cloned(),
            )
            .unwrap()
            .with_type(agg_val.ty)
    }

    fn set_personality_fn(&mut self, _personality: Self::Value) {
        todo!()
    }

    // These are used by everyone except msvc
    fn cleanup_landing_pad(&mut self, _pers_fn: Self::Value) -> (Self::Value, Self::Value) {
        todo!()
    }

    fn filter_landing_pad(&mut self, _pers_fn: Self::Value) -> (Self::Value, Self::Value) {
        todo!()
    }

    fn resume(&mut self, _exn0: Self::Value, _exn1: Self::Value) {
        todo!()
    }

    // These are used only by msvc
    fn cleanup_pad(
        &mut self,
        _parent: Option<Self::Value>,
        _args: &[Self::Value],
    ) -> Self::Funclet {
        todo!()
    }

    fn cleanup_ret(&mut self, _funclet: &Self::Funclet, _unwind: Option<Self::BasicBlock>) {
        todo!()
    }

    fn catch_pad(&mut self, _parent: Self::Value, _args: &[Self::Value]) -> Self::Funclet {
        todo!()
    }

    fn catch_switch(
        &mut self,
        _parent: Option<Self::Value>,
        _unwind: Option<Self::BasicBlock>,
        _handlers: &[Self::BasicBlock],
    ) -> Self::Value {
        todo!()
    }

    fn atomic_cmpxchg(
        &mut self,
        dst: Self::Value,
        cmp: Self::Value,
        src: Self::Value,
        order: AtomicOrdering,
        failure_order: AtomicOrdering,
        _weak: bool,
    ) -> Self::Value {
        assert_ty_eq!(self, cmp.ty, src.ty);
        let ty = src.ty;

        let (dst, access_ty) = self.adjust_pointer_for_typed_access(dst, ty);
        let cmp = self.bitcast(cmp, access_ty);
        let src = self.bitcast(src, access_ty);

        self.validate_atomic(access_ty, dst.def(self));
        // TODO: Default to device scope
        let memory = self.constant_u32(self.span(), Scope::Device as u32);
        let semantics_equal = self.ordering_to_semantics_def(order);
        let semantics_unequal = self.ordering_to_semantics_def(failure_order);
        // Note: OpAtomicCompareExchangeWeak is deprecated, and has the same semantics
        let result = self
            .emit()
            .atomic_compare_exchange(
                access_ty,
                None,
                dst.def(self),
                memory.def(self),
                semantics_equal.def(self),
                semantics_unequal.def(self),
                src.def(self),
                cmp.def(self),
            )
            .unwrap()
            .with_type(access_ty);
        self.bitcast(result, ty)
    }

    fn atomic_rmw(
        &mut self,
        op: AtomicRmwBinOp,
        dst: Self::Value,
        src: Self::Value,
        order: AtomicOrdering,
    ) -> Self::Value {
        let ty = src.ty;

        let (dst, access_ty) = self.adjust_pointer_for_typed_access(dst, ty);
        let src = self.bitcast(src, access_ty);

        self.validate_atomic(access_ty, dst.def(self));
        // TODO: Default to device scope
        let memory = self
            .constant_u32(self.span(), Scope::Device as u32)
            .def(self);
        let semantics = self.ordering_to_semantics_def(order).def(self);
        use AtomicRmwBinOp::*;
        let result = match op {
            AtomicXchg => self.emit().atomic_exchange(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicAdd => self.emit().atomic_i_add(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicSub => self.emit().atomic_i_sub(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicAnd => self.emit().atomic_and(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicNand => self.fatal("atomic nand is not supported"),
            AtomicOr => self.emit().atomic_or(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicXor => self.emit().atomic_xor(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicMax => self.emit().atomic_s_max(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicMin => self.emit().atomic_s_min(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicUMax => self.emit().atomic_u_max(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
            AtomicUMin => self.emit().atomic_u_min(
                access_ty,
                None,
                dst.def(self),
                memory,
                semantics,
                src.def(self),
            ),
        }
        .unwrap()
        .with_type(access_ty);
        self.bitcast(result, ty)
    }

    fn atomic_fence(&mut self, order: AtomicOrdering, _scope: SynchronizationScope) {
        // Ignore sync scope (it only has "single thread" and "cross thread")
        // TODO: Default to device scope
        let memory = self
            .constant_u32(self.span(), Scope::Device as u32)
            .def(self);
        let semantics = self.ordering_to_semantics_def(order).def(self);
        self.emit().memory_barrier(memory, semantics).unwrap();
    }

    fn set_invariant_load(&mut self, _load: Self::Value) {
        // ignore
    }

    /// Called for `StorageLive`
    fn lifetime_start(&mut self, _ptr: Self::Value, _size: Size) {
        // ignore
    }

    /// Called for `StorageDead`
    fn lifetime_end(&mut self, _ptr: Self::Value, _size: Size) {
        // ignore
    }

    fn instrprof_increment(
        &mut self,
        _fn_name: Self::Value,
        _hash: Self::Value,
        _num_counters: Self::Value,
        _index: Self::Value,
    ) {
        todo!()
    }

    fn call(
        &mut self,
        callee_ty: Self::Type,
        _fn_attrs: Option<&CodegenFnAttrs>,
        _fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
        callee: Self::Value,
        args: &[Self::Value],
        funclet: Option<&Self::Funclet>,
    ) -> Self::Value {
        if funclet.is_some() {
            self.fatal("TODO: Funclets are not supported");
        }

        // NOTE(eddyb) see the comment on `SpirvValueKind::FnAddr`, this should
        // be fixed upstream, so we never see any "function pointer" values being
        // created just to perform direct calls.
        let (callee_val, result_type, argument_types) = match self.lookup_type(callee.ty) {
            // HACK(eddyb) this seems to be needed, but it's not what `get_fn_addr`
            // produces, are these coming from inside `rustc_codegen_spirv`?
            SpirvType::Function {
                return_type,
                arguments,
            } => {
                assert_ty_eq!(self, callee_ty, callee.ty);
                (callee.def(self), return_type, arguments)
            }

            SpirvType::Pointer { pointee } => match self.lookup_type(pointee) {
                SpirvType::Function {
                    return_type,
                    arguments,
                } => (
                    if let SpirvValueKind::FnAddr { function } = callee.kind {
                        assert_ty_eq!(self, callee_ty, pointee);
                        function
                    }
                    // Truly indirect call.
                    else {
                        let fn_ptr_val = callee.def(self);
                        self.zombie(fn_ptr_val, "indirect calls are not supported in SPIR-V");
                        fn_ptr_val
                    },
                    return_type,
                    arguments,
                ),
                _ => bug!(
                    "call expected `fn` pointer to point to function type, got `{}`",
                    self.debug_type(pointee)
                ),
            },

            _ => bug!(
                "call expected function or `fn` pointer type, got `{}`",
                self.debug_type(callee.ty)
            ),
        };

        // HACK(eddyb) temporary workaround for untyped pointers upstream.
        // FIXME(eddyb) replace with untyped memory SPIR-V + `qptr` or similar.
        let args: SmallVec<[_; 8]> = args
            .iter()
            .zip_eq(argument_types)
            .map(|(&arg, &expected_type)| self.bitcast(arg, expected_type))
            .collect();
        let args = &args[..];

        let libm_intrinsic = self.libm_intrinsics.borrow().get(&callee_val).copied();
        let buffer_load_intrinsic = self
            .buffer_load_intrinsic_fn_id
            .borrow()
            .get(&callee_val)
            .copied();
        let buffer_store_intrinsic = self
            .buffer_store_intrinsic_fn_id
            .borrow()
            .get(&callee_val)
            .copied();
        if let Some(libm_intrinsic) = libm_intrinsic {
            let result = self.call_libm_intrinsic(libm_intrinsic, result_type, args);
            if result_type != result.ty {
                bug!(
                    "Mismatched libm result type for {:?}: expected {}, got {}",
                    libm_intrinsic,
                    self.debug_type(result_type),
                    self.debug_type(result.ty),
                );
            }
            result
        } else if self.panic_entry_point_ids.borrow().contains(&callee_val) {
            // HACK(eddyb) Rust 2021 `panic!` always uses `format_args!`, even
            // in the simple case that used to pass a `&str` constant, which
            // would not remain reachable in the SPIR-V - but `format_args!` is
            // more complex and neither immediate (`fmt::Arguments` is too big)
            // nor simplified in MIR (e.g. promoted to a constant) in any way,
            // so we have to try and remove the `fmt::Arguments::new` call here.
            #[derive(Default)]
            struct DecodedFormatArgs<'tcx> {
                /// If fully constant, the `pieces: &'a [&'static str]` input
                /// of `fmt::Arguments<'a>` (i.e. the strings between args).
                const_pieces: Option<SmallVec<[String; 2]>>,

                /// Original references for `fmt::Arguments<'a>` dynamic arguments,
                /// i.e. the `&'a T` passed to `fmt::rt::Argument::<'a>::new_*`,
                /// tracking the type `T` and `char` formatting specifier.
                ///
                /// E.g. for `format_args!("{a} {b:x}")` they'll be:
                /// * `&a` with `typeof a` and ' ',
                ///  *`&b` with `typeof b` and 'x'
                ref_arg_ids_with_ty_and_spec: SmallVec<[(Word, Ty<'tcx>, char); 2]>,
            }
            struct FormatArgsNotRecognized(String);

            // HACK(eddyb) this is basically a `try` block.
            let try_decode_and_remove_format_args = || {
                let mut decoded_format_args = DecodedFormatArgs::default();

                let const_u32_as_usize = |ct_id| match self.builder.lookup_const_by_id(ct_id)? {
                    SpirvConst::U32(x) => Some(x as usize),
                    _ => None,
                };
                let const_slice_as_elem_ids = |slice_ptr_and_len_ids: &[Word]| {
                    if let [ptr_id, len_id] = slice_ptr_and_len_ids[..] {
                        if let SpirvConst::PtrTo { pointee } =
                            self.builder.lookup_const_by_id(ptr_id)?
                        {
                            if let SpirvConst::Composite(elems) =
                                self.builder.lookup_const_by_id(pointee)?
                            {
                                if elems.len() == const_u32_as_usize(len_id)? {
                                    return Some(elems);
                                }
                            }
                        }
                    }
                    None
                };
                let const_str_as_utf8 = |str_ptr_and_len_ids: &[Word]| {
                    let piece_str_bytes = const_slice_as_elem_ids(str_ptr_and_len_ids)?
                        .iter()
                        .map(|&id| u8::try_from(const_u32_as_usize(id)?).ok())
                        .collect::<Option<Vec<u8>>>()?;
                    String::from_utf8(piece_str_bytes).ok()
                };

                // HACK(eddyb) some entry-points only take a `&str`, not `fmt::Arguments`.
                if let [
                    SpirvValue {
                        kind: SpirvValueKind::Def(a_id),
                        ..
                    },
                    SpirvValue {
                        kind: SpirvValueKind::Def(b_id),
                        ..
                    },
                    _, // `&'static panic::Location<'static>`
                ] = args[..]
                {
                    if let Some(const_msg) = const_str_as_utf8(&[a_id, b_id]) {
                        decoded_format_args.const_pieces = Some([const_msg].into_iter().collect());
                        return Ok(decoded_format_args);
                    }
                }

                let format_args_id = match args {
                    &[
                        SpirvValue {
                            kind: SpirvValueKind::Def(format_args_id),
                            ..
                        },
                        _, // `&'static panic::Location<'static>`
                    ] => format_args_id,

                    _ => {
                        return Err(FormatArgsNotRecognized(
                            "panic entry-point call args".into(),
                        ));
                    }
                };

                let custom_ext_inst_set_import = self.ext_inst.borrow_mut().import_custom(self);

                // HACK(eddyb) we can remove SSA instructions even when they have
                // side-effects, *as long as* they are "local" enough and cannot
                // be observed from outside this current invocation - because the
                // the abort, any SSA definitions or local variable writes can't
                // be actually used anywhere else (other than *before* the abort).
                let mut builder = self.emit();
                let func_idx = builder.selected_function().unwrap();
                let block_idx = builder.selected_block().unwrap();
                let func = &mut builder.module_mut().functions[func_idx];

                // HACK(eddyb) this is used to check that all `Op{Store,Load}`s
                // that may get removed, operate on local `OpVariable`s,
                // i.e. are not externally observable.
                let local_var_ids: FxHashSet<_> = func.blocks[0]
                    .instructions
                    .iter()
                    .take_while(|inst| inst.class.opcode == Op::Variable)
                    .map(|inst| inst.result_id.unwrap())
                    .collect();
                let require_local_var = |ptr_id, var| {
                    Some(())
                        .filter(|()| local_var_ids.contains(&ptr_id))
                        .ok_or_else(|| FormatArgsNotRecognized(format!("{var} storage not local")))
                };

                let mut non_debug_insts = func.blocks[block_idx]
                    .instructions
                    .iter()
                    .enumerate()
                    .filter(|(_, inst)| {
                        let is_standard_debug = [Op::Line, Op::NoLine].contains(&inst.class.opcode);
                        let is_custom_debug = inst.class.opcode == Op::ExtInst
                            && inst.operands[0].unwrap_id_ref() == custom_ext_inst_set_import
                            && CustomOp::decode_from_ext_inst(inst).is_debuginfo();
                        !(is_standard_debug || is_custom_debug)
                    });

                // HACK(eddyb) to aid in pattern-matching, relevant instructions
                // are decoded to values of this `enum`. For instructions that
                // produce results, the result ID is the first `ID` value.
                #[derive(Debug)]
                enum Inst<'tcx, ID> {
                    Bitcast(ID, ID),
                    CompositeExtract(ID, ID, u32),
                    AccessChain(ID, ID, SpirvConst<'tcx, 'tcx>),
                    InBoundsAccessChain(ID, ID, SpirvConst<'tcx, 'tcx>),
                    Store(ID, ID),
                    Load(ID, ID),
                    Call(ID, ID, SmallVec<[ID; 4]>),
                }

                let taken_inst_idx_range = Cell::new(func.blocks[block_idx].instructions.len())..;

                // Take `count` instructions, advancing backwards, but returning
                // instructions in their original order (and decoded to `Inst`s).
                let mut try_rev_take = |count| {
                    let maybe_rev_insts = (0..count).map(|_| {
                        let (i, inst) = non_debug_insts.next_back()?;
                        taken_inst_idx_range.start.set(i);

                        // HACK(eddyb) avoid the logic below that assumes only ID operands
                        if inst.class.opcode == Op::CompositeExtract {
                            if let (Some(r), &[Operand::IdRef(x), Operand::LiteralInt32(i)]) =
                                (inst.result_id, &inst.operands[..])
                            {
                                return Some(Inst::CompositeExtract(r, x, i));
                            }
                        }

                        // HACK(eddyb) all instructions accepted below
                        // are expected to take no more than 4 operands,
                        // and this is easier to use than an iterator.
                        let id_operands = inst
                            .operands
                            .iter()
                            .map(|operand| operand.id_ref_any())
                            .collect::<Option<SmallVec<[_; 4]>>>()?;

                        // Decode the instruction into one of our `Inst`s.
                        Some(
                            match (inst.class.opcode, inst.result_id, &id_operands[..]) {
                                (Op::Bitcast, Some(r), &[x]) => Inst::Bitcast(r, x),
                                (Op::AccessChain, Some(r), &[p, i]) => {
                                    Inst::AccessChain(r, p, self.builder.lookup_const_by_id(i)?)
                                }
                                (Op::InBoundsAccessChain, Some(r), &[p, i]) => {
                                    Inst::InBoundsAccessChain(
                                        r,
                                        p,
                                        self.builder.lookup_const_by_id(i)?,
                                    )
                                }
                                (Op::Store, None, &[p, v]) => Inst::Store(p, v),
                                (Op::Load, Some(r), &[p]) => Inst::Load(r, p),
                                (Op::FunctionCall, Some(r), [f, args @ ..]) => {
                                    Inst::Call(r, *f, args.iter().copied().collect())
                                }
                                _ => return None,
                            },
                        )
                    });
                    let mut insts = maybe_rev_insts.collect::<Option<SmallVec<[_; 4]>>>()?;
                    insts.reverse();
                    Some(insts)
                };
                let fmt_args_new_call_insts = try_rev_take(3).ok_or_else(|| {
                    FormatArgsNotRecognized(
                        "fmt::Arguments::new call: ran out of instructions".into(),
                    )
                })?;
                let ((pieces_slice_ptr_id, pieces_len_id), (rt_args_slice_ptr_id, rt_args_count)) =
                    match fmt_args_new_call_insts[..] {
                        [
                            Inst::Call(call_ret_id, callee_id, ref call_args),
                            Inst::Store(st_dst_id, st_val_id),
                            Inst::Load(ld_val_id, ld_src_id),
                        ] if self.fmt_args_new_fn_ids.borrow().contains(&callee_id)
                            && call_ret_id == st_val_id
                            && st_dst_id == ld_src_id
                            && ld_val_id == format_args_id =>
                        {
                            require_local_var(st_dst_id, "fmt::Arguments::new destination")?;

                            match call_args[..] {
                                // `<core::fmt::Arguments>::new_v1`
                                [
                                    pieces_slice_ptr_id,
                                    pieces_len_id,
                                    rt_args_slice_ptr_id,
                                    rt_args_len_id,
                                ] => (
                                    (pieces_slice_ptr_id, pieces_len_id),
                                    (
                                        Some(rt_args_slice_ptr_id),
                                        const_u32_as_usize(rt_args_len_id).ok_or_else(|| {
                                            FormatArgsNotRecognized(
                                                "fmt::Arguments::new: args.len() not constant"
                                                    .into(),
                                            )
                                        })?,
                                    ),
                                ),

                                // `<core::fmt::Arguments>::new_const`
                                [pieces_slice_ptr_id, pieces_len_id] => {
                                    ((pieces_slice_ptr_id, pieces_len_id), (None, 0))
                                }

                                _ => {
                                    return Err(FormatArgsNotRecognized(
                                        "fmt::Arguments::new call args".into(),
                                    ));
                                }
                            }
                        }
                        _ => {
                            // HACK(eddyb) this gathers more context before reporting.
                            let mut insts = fmt_args_new_call_insts;
                            insts.reverse();
                            while let Some(extra_inst) = try_rev_take(1) {
                                insts.extend(extra_inst);
                                if insts.len() >= 32 {
                                    break;
                                }
                            }
                            insts.reverse();

                            return Err(FormatArgsNotRecognized(format!(
                                "fmt::Arguments::new call sequence ({insts:?})",
                            )));
                        }
                    };

                // HACK(eddyb) this is the worst part: if we do have runtime
                // arguments (from e.g. new `assert!`s being added to `core`),
                // we have to confirm their many instructions for removal.
                if rt_args_count > 0 {
                    let rt_args_slice_ptr_id = rt_args_slice_ptr_id.unwrap();
                    let rt_args_array_ptr_id = match try_rev_take(1).ok_or_else(|| {
                        FormatArgsNotRecognized(
                            "&[fmt::rt::Argument] bitcast: ran out of instructions".into(),
                        )
                    })?[..]
                    {
                        [Inst::Bitcast(out_id, in_id)] if out_id == rt_args_slice_ptr_id => in_id,
                        _ => {
                            return Err(FormatArgsNotRecognized(
                                "&[fmt::rt::Argument] bitcast".into(),
                            ));
                        }
                    };
                    require_local_var(rt_args_array_ptr_id, "[fmt::rt::Argument; N]")?;

                    // Each runtime argument has 3 instructions to call one of
                    // the `fmt::rt::Argument::new_*` functions (and split its
                    // scalar pair result), and 5 instructions to store it into
                    // the appropriate slot in the array. The groups of 3 and 5
                    // instructions, for all runtime args, are each separate.
                    let stores_to_rt_args_array =
                        try_rev_take(rt_args_count * 5).ok_or_else(|| {
                            FormatArgsNotRecognized(
                                "[fmt::rt::Argument; N] stores: ran out of instructions".into(),
                            )
                        })?;
                    let stores_to_rt_args_array = stores_to_rt_args_array.chunks(5);
                    let rt_arg_new_calls = try_rev_take(rt_args_count * 3).ok_or_else(|| {
                        FormatArgsNotRecognized(
                            "fmt::rt::Argument::new calls: ran out of instructions".into(),
                        )
                    })?;
                    let rt_arg_new_calls = rt_arg_new_calls.chunks(3);

                    for (rt_arg_idx, (rt_arg_new_call_insts, store_to_rt_args_array_insts)) in
                        rt_arg_new_calls.zip(stores_to_rt_args_array).enumerate()
                    {
                        let (a, b) = match rt_arg_new_call_insts[..] {
                            [
                                Inst::Call(call_ret_id, callee_id, ref call_args),
                                Inst::CompositeExtract(a, a_parent_pair, 0),
                                Inst::CompositeExtract(b, b_parent_pair, 1),
                            ] if [a_parent_pair, b_parent_pair] == [call_ret_id; 2] => self
                                .fmt_rt_arg_new_fn_ids_to_ty_and_spec
                                .borrow()
                                .get(&callee_id)
                                .and_then(|&(ty, spec)| match call_args[..] {
                                    [x] => {
                                        decoded_format_args
                                            .ref_arg_ids_with_ty_and_spec
                                            .push((x, ty, spec));
                                        Some((a, b))
                                    }
                                    _ => None,
                                }),
                            _ => None,
                        }
                        .ok_or_else(|| {
                            FormatArgsNotRecognized(format!(
                                "fmt::rt::Argument::new call sequence ({rt_arg_new_call_insts:?})"
                            ))
                        })?;

                        match store_to_rt_args_array_insts[..] {
                            [
                                Inst::InBoundsAccessChain(
                                    array_slot_ptr,
                                    array_base_ptr,
                                    SpirvConst::U32(array_idx),
                                ),
                                Inst::AccessChain(a_ptr, a_base_ptr, SpirvConst::U32(0)),
                                Inst::Store(a_st_dst, a_st_val),
                                Inst::AccessChain(b_ptr, b_base_ptr, SpirvConst::U32(1)),
                                Inst::Store(b_st_dst, b_st_val),
                            ] if array_base_ptr == rt_args_array_ptr_id
                                && array_idx as usize == rt_arg_idx
                                && [a_base_ptr, b_base_ptr] == [array_slot_ptr; 2]
                                && (a, b) == (a_st_val, b_st_val)
                                && (a_ptr, b_ptr) == (a_st_dst, b_st_dst) => {}
                            _ => {
                                return Err(FormatArgsNotRecognized(format!(
                                    "[fmt::rt::Argument; N] stores sequence ({store_to_rt_args_array_insts:?})"
                                )));
                            }
                        }
                    }
                }

                // If the `pieces: &[&str]` slice needs a bitcast, it'll be here.
                let pieces_slice_ptr_id = match try_rev_take(1).as_deref() {
                    Some(&[Inst::Bitcast(out_id, in_id)]) if out_id == pieces_slice_ptr_id => in_id,
                    _ => pieces_slice_ptr_id,
                };
                decoded_format_args.const_pieces =
                    const_slice_as_elem_ids(&[pieces_slice_ptr_id, pieces_len_id]).and_then(
                        |piece_ids| {
                            piece_ids
                                .iter()
                                .map(|&piece_id| {
                                    match self.builder.lookup_const_by_id(piece_id)? {
                                        SpirvConst::Composite(piece) => const_str_as_utf8(piece),
                                        _ => None,
                                    }
                                })
                                .collect::<Option<_>>()
                        },
                    );

                // Keep all instructions up to (but not including) the last one
                // confirmed above to be the first instruction of `format_args!`.
                func.blocks[block_idx]
                    .instructions
                    .truncate(taken_inst_idx_range.start.get());

                Ok(decoded_format_args)
            };

            let mut debug_printf_args = SmallVec::<[_; 2]>::new();
            let message = match try_decode_and_remove_format_args() {
                Ok(DecodedFormatArgs {
                    const_pieces,
                    ref_arg_ids_with_ty_and_spec,
                }) => {
                    match const_pieces {
                        Some(const_pieces) => {
                            const_pieces
                                .into_iter()
                                .map(|s| Cow::Owned(s.replace('%', "%%")))
                                .interleave(ref_arg_ids_with_ty_and_spec.iter().map(
                                    |&(ref_id, ty, spec)| {
                                        use rustc_target::abi::{Integer::*, Primitive::*};

                                        let layout = self.layout_of(ty);

                                        let scalar = match layout.abi {
                                            Abi::Scalar(scalar) => Some(scalar.primitive()),
                                            _ => None,
                                        };
                                        let debug_printf_fmt = match (spec, scalar) {
                                            // FIXME(eddyb) support more of these,
                                            // potentially recursing to print ADTs.
                                            (' ' | '?', Some(Int(I32, false))) => "%u",
                                            ('x', Some(Int(I32, false))) => "%x",
                                            (' ' | '?', Some(Int(I32, true))) => "%i",
                                            (' ' | '?', Some(F32)) => "%f",

                                            _ => "",
                                        };

                                        if debug_printf_fmt.is_empty() {
                                            return Cow::Owned(
                                                format!("{{/* unprintable {ty} */:{spec}}}")
                                                    .replace('%', "%%"),
                                            );
                                        }

                                        let spirv_type = layout.spirv_type(self.span(), self);
                                        debug_printf_args.push(
                                            self.emit()
                                                .load(spirv_type, None, ref_id, None, [])
                                                .unwrap()
                                                .with_type(spirv_type),
                                        );
                                        Cow::Borrowed(debug_printf_fmt)
                                    },
                                ))
                                .collect::<String>()
                        }
                        None => "<unknown message>".into(),
                    }
                }

                Err(FormatArgsNotRecognized(step)) => {
                    if let Some(current_span) = self.current_span {
                        let mut warn = self.tcx.sess.struct_span_warn(
                            current_span,
                            "failed to find and remove `format_args!` construction for this `panic!`",
                        );

                        warn.note(
                            "compilation may later fail due to leftover `format_args!` internals",
                        );

                        if self.tcx.sess.opts.unstable_opts.inline_mir != Some(false) {
                            warn.note("missing `-Zinline-mir=off` flag (should've been set by `spirv-builder`)")
                                .help("check `.cargo` and environment variables for potential overrides")
                                .help("(or, if not using `spirv-builder` at all, add the flag manually)");
                        } else {
                            warn.note(format!("[RUST-GPU BUG] bailed from {step}"));
                        }

                        warn.emit();
                    }
                    "<unknown message> (failed to find/decode `format_args!` expansion)".into()
                }
            };

            // HACK(eddyb) redirect any possible panic call to an abort, to avoid
            // needing to materialize `&core::panic::Location` or `format_args!`.
            self.abort_with_kind_and_message_debug_printf("panic", message, debug_printf_args);
            self.undef(result_type)
        } else if let Some(mode) = buffer_load_intrinsic {
            self.codegen_buffer_load_intrinsic(result_type, args, mode)
        } else if let Some(mode) = buffer_store_intrinsic {
            self.codegen_buffer_store_intrinsic(args, mode);

            let void_ty = SpirvType::Void.def(rustc_span::DUMMY_SP, self);
            SpirvValue {
                kind: SpirvValueKind::IllegalTypeUsed(void_ty),
                ty: void_ty,
            }
        } else {
            let args = args.iter().map(|arg| arg.def(self)).collect::<Vec<_>>();
            self.emit()
                .function_call(result_type, None, callee_val, args)
                .unwrap()
                .with_type(result_type)
        }
    }

    fn zext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value {
        self.intcast(val, dest_ty, false)
    }

    fn do_not_inline(&mut self, _llret: Self::Value) {
        // Ignore
    }
}