1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
use rustc_data_structures::fx::FxHashMap;
use smallvec::SmallVec;
use spirt::func_at::{FuncAt, FuncAtMut};
use spirt::transform::InnerInPlaceTransform;
use spirt::visit::InnerVisit;
use spirt::{
spv, Const, ConstCtor, ConstDef, Context, ControlNode, ControlNodeDef, ControlNodeKind,
ControlNodeOutputDecl, ControlRegion, ControlRegionInputDecl, DataInst, DataInstDef,
DataInstFormDef, DataInstKind, EntityOrientedDenseMap, FuncDefBody, SelectionKind, Type,
TypeCtor, TypeDef, Value,
};
use std::collections::hash_map::Entry;
use std::convert::{TryFrom, TryInto};
use std::hash::Hash;
use std::{iter, slice};
use super::{HashableValue, ReplaceValueWith, VisitAllControlRegionsAndNodes};
/// Apply "reduction rules" to `func_def_body`, replacing (pure) computations
/// with one of their inputs or a constant (e.g. `x + 0 => x` or `1 + 2 => 3`),
/// and at most only adding more `Select` outputs/`Loop` state (where necessary)
/// but never any new instructions (unlike e.g. LLVM's instcombine).
pub(crate) fn reduce_in_func(cx: &Context, func_def_body: &mut FuncDefBody) {
let wk = &super::SpvSpecWithExtras::get().well_known;
let parent_map = ParentMap::new(func_def_body);
// FIXME(eddyb) entity-keyed dense maps might be better for performance,
// but would require separate maps for separate `Value` cases.
let mut value_replacements = FxHashMap::default();
let mut reduction_cache = FxHashMap::default();
// HACK(eddyb) this is an annoying workaround for iterator invalidation
// (SPIR-T iterators don't cope well with the underlying data changing).
//
// FIXME(eddyb) replace SPIR-T `FuncAtMut<EntityListIter<T>>` with some
// kind of "list cursor", maybe even allowing removal during traversal.
let mut reduction_queue = vec![];
#[derive(Copy, Clone)]
enum ReductionTarget {
/// Replace uses of a `DataInst` with a reduced `Value`.
DataInst(DataInst),
/// Replace an `OpSwitch` `ControlNode` with an `if`-`else` one.
//
// HACK(eddyb) see comment in `handle_control_node` for more details.
SwitchToIfElse(ControlNode),
}
loop {
let old_value_replacements_len = value_replacements.len();
// HACK(eddyb) we want to transform `DataInstDef`s, while having the ability
// to (mutably) traverse the function, but `in_place_transform_data_inst_def`
// only gives us a `&mut DataInstDef` (without the `FuncAtMut` around it).
//
// HACK(eddyb) ignore the above, for now it's pretty bad due to iterator
// invalidation (see comment on `let reduction_queue` too).
let mut handle_control_node =
|func_at_control_node: FuncAt<'_, ControlNode>| match func_at_control_node.def() {
&ControlNodeDef {
kind: ControlNodeKind::Block { insts },
..
} => {
for func_at_inst in func_at_control_node.at(insts) {
if let Ok(redu) = Reducible::try_from((cx, func_at_inst.def())) {
let redu_target = ReductionTarget::DataInst(func_at_inst.position);
reduction_queue.push((redu_target, redu));
}
}
}
ControlNodeDef {
kind:
ControlNodeKind::Select {
kind,
scrutinee,
cases,
},
outputs,
} => {
// FIXME(eddyb) this should probably be ran in the queue loop
// below, to more quickly benefit from previous reductions.
for i in 0..u32::try_from(outputs.len()).unwrap() {
let output = Value::ControlNodeOutput {
control_node: func_at_control_node.position,
output_idx: i,
};
if let Entry::Vacant(entry) =
value_replacements.entry(HashableValue(output))
{
let per_case_value = cases.iter().map(|&case| {
func_at_control_node.at(case).def().outputs[i as usize]
});
if let Some(reduced) = try_reduce_select(
cx,
&parent_map,
func_at_control_node.position,
kind,
*scrutinee,
per_case_value,
) {
entry.insert(reduced);
}
}
}
// HACK(eddyb) turn `switch x { case 0: A; case 1: B; default: ... }`
// into `if ... {B} else {A}`, when `x` ends up limited in `0..=1`,
// (such `switch`es come from e.g. `match`-ing enums w/ 2 variants)
// allowing us to bypass SPIR-T current (and temporary) lossiness
// wrt `default: OpUnreachable` (i.e. we prove the `default:` can't
// be entered based on `x` not having values other than `0` or `1`)
if let SelectionKind::SpvInst(spv_inst) = kind {
if spv_inst.opcode == wk.OpSwitch && cases.len() == 3 {
// FIXME(eddyb) this kind of `OpSwitch` decoding logic should
// be done by SPIR-T ahead of time, not here.
let num_logical_imms = cases.len() - 1;
assert_eq!(spv_inst.imms.len() % num_logical_imms, 0);
let logical_imm_size = spv_inst.imms.len() / num_logical_imms;
// FIXME(eddyb) collect to array instead.
let logical_imms_as_u32s: SmallVec<[_; 2]> = spv_inst
.imms
.chunks(logical_imm_size)
.map(spv_imm_checked_trunc32)
.collect();
// FIMXE(eddyb) support more values than just `0..=1`.
if logical_imms_as_u32s[..] == [Some(0), Some(1)] {
let redu = Reducible {
op: PureOp::IntToBool,
output_type: cx.intern(TypeDef {
attrs: Default::default(),
ctor: TypeCtor::SpvInst(wk.OpTypeBool.into()),
ctor_args: iter::empty().collect(),
}),
input: *scrutinee,
};
let redu_target =
ReductionTarget::SwitchToIfElse(func_at_control_node.position);
reduction_queue.push((redu_target, redu));
}
}
}
}
ControlNodeDef {
kind:
ControlNodeKind::Loop {
body,
initial_inputs,
..
},
..
} => {
// FIXME(eddyb) this should probably be ran in the queue loop
// below, to more quickly benefit from previous reductions.
let body_outputs = &func_at_control_node.at(*body).def().outputs;
for (i, (&initial_input, &body_output)) in
initial_inputs.iter().zip(body_outputs).enumerate()
{
let body_input = Value::ControlRegionInput {
region: *body,
input_idx: i as u32,
};
if body_output == body_input {
value_replacements
.entry(HashableValue(body_input))
.or_insert(initial_input);
}
}
}
};
func_def_body.inner_visit_with(&mut VisitAllControlRegionsAndNodes {
state: (),
visit_control_region: |_: &mut (), _| {},
visit_control_node: |_: &mut (), func_at_control_node| {
handle_control_node(func_at_control_node);
},
});
// FIXME(eddyb) should this loop become the only loop, by having loop
// reductions push the new instruction to `reduction_queue`? the problem
// then is that it's not trivial to figure out what else might benefit
// from another full scan, so perhaps the only solution is "demand-driven"
// (recursing into use->def, instead of processing defs).
let mut any_changes = false;
for (redu_target, redu) in reduction_queue.drain(..) {
if let Some(v) = redu.try_reduce(
cx,
func_def_body.at_mut(()),
&value_replacements,
&parent_map,
&mut reduction_cache,
) {
any_changes = true;
match redu_target {
ReductionTarget::DataInst(inst) => {
value_replacements.insert(HashableValue(Value::DataInstOutput(inst)), v);
// Replace the reduced `DataInstDef` itself with `OpNop`,
// removing the ability to use its "name" as a value.
//
// FIXME(eddyb) cache the interned `OpNop`.
*func_def_body.at_mut(inst).def() = DataInstDef {
attrs: Default::default(),
form: cx.intern(DataInstFormDef {
kind: DataInstKind::SpvInst(wk.OpNop.into()),
output_type: None,
}),
inputs: iter::empty().collect(),
};
}
// HACK(eddyb) see comment in `handle_control_node` for more details.
ReductionTarget::SwitchToIfElse(control_node) => {
let control_node_def = func_def_body.at_mut(control_node).def();
match &control_node_def.kind {
ControlNodeKind::Select { cases, .. } => match cases[..] {
[_default, case_0, case_1] => {
control_node_def.kind = ControlNodeKind::Select {
kind: SelectionKind::BoolCond,
scrutinee: v,
cases: [case_1, case_0].iter().copied().collect(),
};
}
_ => unreachable!(),
},
_ => unreachable!(),
}
}
}
}
}
if !any_changes && old_value_replacements_len == value_replacements.len() {
break;
}
func_def_body.inner_in_place_transform_with(&mut ReplaceValueWith(|mut v| {
let old = v;
loop {
match v {
Value::Const(_) => break,
_ => match value_replacements.get(&HashableValue(v)) {
Some(&new) => v = new,
None => break,
},
}
}
if v != old {
any_changes = true;
Some(v)
} else {
None
}
}));
}
}
// FIXME(eddyb) maybe this kind of "parent map" should be provided by SPIR-T?
#[derive(Default)]
struct ParentMap {
data_inst_parent: EntityOrientedDenseMap<DataInst, ControlNode>,
control_node_parent: EntityOrientedDenseMap<ControlNode, ControlRegion>,
control_region_parent: EntityOrientedDenseMap<ControlRegion, ControlNode>,
}
impl ParentMap {
fn new(func_def_body: &FuncDefBody) -> Self {
let mut visitor = VisitAllControlRegionsAndNodes {
state: Self::default(),
visit_control_region:
|this: &mut Self, func_at_control_region: FuncAt<'_, ControlRegion>| {
for func_at_child_control_node in func_at_control_region.at_children() {
this.control_node_parent.insert(
func_at_child_control_node.position,
func_at_control_region.position,
);
}
},
visit_control_node: |this: &mut Self, func_at_control_node: FuncAt<'_, ControlNode>| {
let child_regions = match &func_at_control_node.def().kind {
&ControlNodeKind::Block { insts } => {
for func_at_inst in func_at_control_node.at(insts) {
this.data_inst_parent
.insert(func_at_inst.position, func_at_control_node.position);
}
&[][..]
}
ControlNodeKind::Select { cases, .. } => cases,
ControlNodeKind::Loop { body, .. } => slice::from_ref(body),
};
for &child_region in child_regions {
this.control_region_parent
.insert(child_region, func_at_control_node.position);
}
},
};
func_def_body.inner_visit_with(&mut visitor);
visitor.state
}
}
/// If possible, find a single `Value` from `cases` (or even `scrutinee`),
/// which would always be a valid result for `Select(kind, scrutinee, cases)`,
/// regardless of which case gets (dynamically) taken.
fn try_reduce_select(
cx: &Context,
parent_map: &ParentMap,
select_control_node: ControlNode,
// FIXME(eddyb) are these redundant with the `ControlNode` above?
kind: &SelectionKind,
scrutinee: Value,
cases: impl Iterator<Item = Value>,
) -> Option<Value> {
let wk = &super::SpvSpecWithExtras::get().well_known;
let as_spv_const = |v: Value| match v {
Value::Const(ct) => match &cx[ct].ctor {
ConstCtor::SpvInst(spv_inst) => Some(spv_inst.opcode),
_ => None,
},
_ => None,
};
// Ignore `OpUndef`s, as they can be legally substituted with any other value.
let mut first_undef = None;
let mut non_undef_cases = cases.filter(|&case| {
let is_undef = as_spv_const(case) == Some(wk.OpUndef);
if is_undef && first_undef.is_none() {
first_undef = Some(case);
}
!is_undef
});
match (non_undef_cases.next(), non_undef_cases.next()) {
(None, _) => first_undef,
// `Select(c: bool, true, false)` can be replaced with just `c`.
(Some(x), Some(y))
if matches!(kind, SelectionKind::BoolCond)
&& as_spv_const(x) == Some(wk.OpConstantTrue)
&& as_spv_const(y) == Some(wk.OpConstantFalse) =>
{
assert!(non_undef_cases.next().is_none() && first_undef.is_none());
Some(scrutinee)
}
(Some(x), y) => {
if y.into_iter().chain(non_undef_cases).all(|z| z == x) {
// HACK(eddyb) closure here serves as `try` block.
let is_x_valid_outside_select = || {
// Constants are always valid.
if let Value::Const(_) = x {
return Some(());
}
// HACK(eddyb) if the same value appears in two different
// cases, it's definitely dominating the whole `Select`.
if y.is_some() {
return Some(());
}
// In general, `x` dominating the `Select` is what would
// allow lifting an use of it outside the `Select`.
let region_defining_x = match x {
Value::Const(_) => unreachable!(),
Value::ControlRegionInput { region, .. } => region,
Value::ControlNodeOutput { control_node, .. } => {
*parent_map.control_node_parent.get(control_node)?
}
Value::DataInstOutput(inst) => *parent_map
.control_node_parent
.get(*parent_map.data_inst_parent.get(inst)?)?,
};
// Fast-reject: if `x` is defined immediately inside one of
// `select_control_node`'s cases, it's not a dominator.
if parent_map.control_region_parent.get(region_defining_x)
== Some(&select_control_node)
{
return None;
}
// Since we know `x` is used inside the `Select`, this only
// needs to check that `x` is defined in a region that the
// `Select` is nested in, as the only other possibility is
// that the `x` is defined inside the `Select` - that is,
// one of `x` and `Select` always dominates the other.
//
// FIXME(eddyb) this could be more efficient with some kind
// of "region depth" precomputation but a potentially-slower
// check doubles as a sanity check, for now.
let mut region_containing_select =
*parent_map.control_node_parent.get(select_control_node)?;
loop {
if region_containing_select == region_defining_x {
return Some(());
}
region_containing_select = *parent_map.control_node_parent.get(
*parent_map
.control_region_parent
.get(region_containing_select)?,
)?;
}
};
if is_x_valid_outside_select().is_some() {
return Some(x);
}
}
None
}
}
}
/// Pure operation that transforms one `Value` into another `Value`.
//
// FIXME(eddyb) move this elsewhere? also, how should binops etc. be supported?
// (one approach could be having a "focus input" that can be dynamic, with the
// other inputs being `Const`s, i.e. partially applying all but one input)
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
enum PureOp {
BitCast,
CompositeExtract {
elem_idx: spv::Imm,
},
/// Maps `0` to `false`, and `1` to `true`, but any other input values won't
/// allow reduction, which is used to signal `0..=1` isn't being guaranteed.
//
// HACK(eddyb) not a real operation, but a helper used to extract a `bool`
// equivalent for an `OpSwitch`'s scrutinee.
// FIXME(eddyb) proper SPIR-T range analysis should be implemented and such
// a reduction not attempted at all if the range is larger than `0..=1`
// (also, the actual operation can be replaced with `x == 1` or `x != 0`)
IntToBool,
}
impl TryFrom<&spv::Inst> for PureOp {
type Error = ();
fn try_from(spv_inst: &spv::Inst) -> Result<Self, ()> {
let wk = &super::SpvSpecWithExtras::get().well_known;
let op = spv_inst.opcode;
Ok(match spv_inst.imms[..] {
[] if op == wk.OpBitcast => Self::BitCast,
// FIXME(eddyb) support more than one index at a time, somehow.
[elem_idx] if op == wk.OpCompositeExtract => Self::CompositeExtract { elem_idx },
_ => return Err(()),
})
}
}
impl TryFrom<PureOp> for spv::Inst {
type Error = ();
fn try_from(op: PureOp) -> Result<Self, ()> {
let wk = &super::SpvSpecWithExtras::get().well_known;
let (opcode, imms) = match op {
PureOp::BitCast => (wk.OpBitcast, iter::empty().collect()),
PureOp::CompositeExtract { elem_idx } => {
(wk.OpCompositeExtract, iter::once(elem_idx).collect())
}
// HACK(eddyb) this is the only reason this is `TryFrom` not `From`.
PureOp::IntToBool => return Err(()),
};
Ok(Self { opcode, imms })
}
}
/// Potentially-reducible application of a `PureOp` (`op`) to `input`.
#[derive(Copy, Clone, PartialEq, Eq)]
struct Reducible<V = Value> {
op: PureOp,
output_type: Type,
input: V,
}
// HACK(eddyb) this works around the accidental lack of `spirt::Value: Hash`.
impl Hash for Reducible<Value> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.op.hash(state);
self.output_type.hash(state);
HashableValue(self.input).hash(state);
}
}
impl<V> Reducible<V> {
fn with_input<V2>(self, new_input: V2) -> Reducible<V2> {
Reducible {
op: self.op,
output_type: self.output_type,
input: new_input,
}
}
}
// FIXME(eddyb) instead of taking a `&Context`, could `Reducible` hold a `DataInstForm`?
impl TryFrom<(&Context, &DataInstDef)> for Reducible {
type Error = ();
fn try_from((cx, inst_def): (&Context, &DataInstDef)) -> Result<Self, ()> {
let inst_form_def = &cx[inst_def.form];
if let DataInstKind::SpvInst(spv_inst) = &inst_form_def.kind {
let op = PureOp::try_from(spv_inst)?;
let output_type = inst_form_def.output_type.unwrap();
if let [input] = inst_def.inputs[..] {
return Ok(Self {
op,
output_type,
input,
});
}
}
Err(())
}
}
impl Reducible {
// HACK(eddyb) `IntToBool` is the only reason this can return `None`.
fn try_into_inst(self, cx: &Context) -> Option<DataInstDef> {
let Self {
op,
output_type,
input,
} = self;
Some(DataInstDef {
attrs: Default::default(),
form: cx.intern(DataInstFormDef {
kind: DataInstKind::SpvInst(op.try_into().ok()?),
output_type: Some(output_type),
}),
inputs: iter::once(input).collect(),
})
}
}
/// Returns `Some(lowest32)` iff `imms` contains one *logical* SPIR-V immediate
/// representing a (little-endian) integer which truncates (if wider than 32 bits)
/// to `lowest32`, losslessly (i.e. the rest of the bits are all zeros).
//
// FIXME(eddyb) move this into some kind of utility/common helpers place.
fn spv_imm_checked_trunc32(imms: &[spv::Imm]) -> Option<u32> {
match imms {
&[spv::Imm::Short(_, lowest32)] | &[spv::Imm::LongStart(_, lowest32), ..]
if imms[1..]
.iter()
.all(|imm| matches!(imm, spv::Imm::LongCont(_, 0))) =>
{
Some(lowest32)
}
_ => None,
}
}
impl Reducible<Const> {
// FIXME(eddyb) in theory this should always return `Some`.
fn try_reduce_const(&self, cx: &Context) -> Option<Const> {
let wk = &super::SpvSpecWithExtras::get().well_known;
let ct_def = &cx[self.input];
match (self.op, &ct_def.ctor) {
(_, ConstCtor::SpvInst(spv_inst)) if spv_inst.opcode == wk.OpUndef => {
Some(cx.intern(ConstDef {
attrs: ct_def.attrs,
ty: self.output_type,
ctor: ct_def.ctor.clone(),
ctor_args: iter::empty().collect(),
}))
}
(PureOp::BitCast, ConstCtor::SpvInst(spv_inst)) if spv_inst.opcode == wk.OpConstant => {
// `OpTypeInt`/`OpTypeFloat` bit width.
let scalar_width = |ty: Type| match &cx[ty].ctor {
TypeCtor::SpvInst(spv_inst)
if [wk.OpTypeInt, wk.OpTypeFloat].contains(&spv_inst.opcode) =>
{
Some(spv_inst.imms[0])
}
_ => None,
};
match (scalar_width(ct_def.ty), scalar_width(self.output_type)) {
(Some(from), Some(to)) if from == to => Some(cx.intern(ConstDef {
attrs: ct_def.attrs,
ty: self.output_type,
ctor: ct_def.ctor.clone(),
ctor_args: ct_def.ctor_args.clone(),
})),
_ => None,
}
}
(
PureOp::CompositeExtract {
elem_idx: spv::Imm::Short(_, elem_idx),
},
ConstCtor::SpvInst(spv_inst),
) if spv_inst.opcode == wk.OpConstantComposite => {
Some(ct_def.ctor_args[elem_idx as usize])
}
(PureOp::IntToBool, ConstCtor::SpvInst(spv_inst))
if spv_inst.opcode == wk.OpConstant =>
{
let bool_const_op = match spv_imm_checked_trunc32(&spv_inst.imms[..]) {
Some(0) => wk.OpConstantFalse,
Some(1) => wk.OpConstantTrue,
_ => return None,
};
Some(cx.intern(ConstDef {
attrs: Default::default(),
ty: self.output_type,
ctor: ConstCtor::SpvInst(bool_const_op.into()),
ctor_args: iter::empty().collect(),
}))
}
_ => None,
}
}
}
/// Outcome of a single step of a reduction (which may require more steps).
enum ReductionStep {
Complete(Value),
Partial(Reducible),
}
impl Reducible<&DataInstDef> {
// FIXME(eddyb) force the input to actually be itself some kind of pure op.
fn try_reduce_output_of_data_inst(&self, cx: &Context) -> Option<ReductionStep> {
let wk = &super::SpvSpecWithExtras::get().well_known;
let input_inst_def = self.input;
if let DataInstKind::SpvInst(input_spv_inst) = &cx[input_inst_def.form].kind {
// NOTE(eddyb) do not destroy information left in e.g. comments.
#[allow(clippy::match_same_arms)]
match self.op {
PureOp::BitCast => {
// FIXME(eddyb) reduce chains of bitcasts.
}
PureOp::CompositeExtract { elem_idx } => {
if input_spv_inst.opcode == wk.OpCompositeInsert
&& input_spv_inst.imms.len() == 1
{
let new_elem = input_inst_def.inputs[0];
let prev_composite = input_inst_def.inputs[1];
return Some(if input_spv_inst.imms[0] == elem_idx {
ReductionStep::Complete(new_elem)
} else {
ReductionStep::Partial(self.with_input(prev_composite))
});
}
}
PureOp::IntToBool => {
// FIXME(eddyb) look into what instructions might end up
// being used to transform booleans into integers.
}
}
}
None
}
}
impl Reducible {
// FIXME(eddyb) make this into some kind of local `ReduceCx` method.
fn try_reduce(
mut self,
cx: &Context,
// FIXME(eddyb) come up with a better convention for this!
func: FuncAtMut<'_, ()>,
value_replacements: &FxHashMap<HashableValue, Value>,
parent_map: &ParentMap,
cache: &mut FxHashMap<Self, Option<Value>>,
) -> Option<Value> {
// FIXME(eddyb) should we care about the cache *before* this loop below?
// HACK(eddyb) eagerly apply `value_replacements`.
// FIXME(eddyb) this could do the union-find trick of shortening chains
// the first time they're encountered, but also, if this process was more
// "demand-driven" (recursing into use->def, instead of processing defs),
// it might not require any of this complication.
while let Some(&replacement) = value_replacements.get(&HashableValue(self.input)) {
self.input = replacement;
}
if let Some(&cached) = cache.get(&self) {
return cached;
}
let result = self.try_reduce_uncached(cx, func, value_replacements, parent_map, cache);
cache.insert(self, result);
result
}
// FIXME(eddyb) make this into some kind of local `ReduceCx` method.
fn try_reduce_uncached(
self,
cx: &Context,
// FIXME(eddyb) come up with a better convention for this!
mut func: FuncAtMut<'_, ()>,
value_replacements: &FxHashMap<HashableValue, Value>,
parent_map: &ParentMap,
cache: &mut FxHashMap<Self, Option<Value>>,
) -> Option<Value> {
match self.input {
Value::Const(ct) => self.with_input(ct).try_reduce_const(cx).map(Value::Const),
Value::ControlRegionInput {
region,
input_idx: state_idx,
} => {
let loop_node = *parent_map.control_region_parent.get(region)?;
// HACK(eddyb) this can't be a closure due to lifetime elision.
fn loop_initial_states(
func_at_loop_node: FuncAtMut<'_, ControlNode>,
) -> &mut SmallVec<[Value; 2]> {
match &mut func_at_loop_node.def().kind {
ControlNodeKind::Loop { initial_inputs, .. } => initial_inputs,
_ => unreachable!(),
}
}
let input_from_initial_state =
loop_initial_states(func.reborrow().at(loop_node))[state_idx as usize];
let input_from_updated_state =
func.reborrow().at(region).def().outputs[state_idx as usize];
let output_from_initial_state = self
.with_input(input_from_initial_state)
.try_reduce(cx, func.reborrow(), value_replacements, parent_map, cache)?;
// HACK(eddyb) this is here because it can fail, see the comment
// on `output_from_updated_state` for what's actually going on.
let output_from_updated_state_inst = self
.with_input(input_from_updated_state)
.try_into_inst(cx)?;
// Now that the reduction succeeded for the initial state,
// we can proceed with augmenting the loop with the extra state.
loop_initial_states(func.reborrow().at(loop_node)).push(output_from_initial_state);
let loop_state_decls = &mut func.reborrow().at(region).def().inputs;
let new_loop_state_idx = u32::try_from(loop_state_decls.len()).unwrap();
loop_state_decls.push(ControlRegionInputDecl {
attrs: Default::default(),
ty: self.output_type,
});
// HACK(eddyb) generating the instruction wholesale again is not
// the most efficient way to go about this, but avoiding getting
// stuck in a loop while processing a loop is also important.
//
// FIXME(eddyb) attempt to replace this with early-inserting in
// `cache` *then* returning.
let output_from_updated_state = func
.data_insts
.define(cx, output_from_updated_state_inst.into());
func.reborrow()
.at(region)
.def()
.outputs
.push(Value::DataInstOutput(output_from_updated_state));
// FIXME(eddyb) move this into some kind of utility/common helpers.
let loop_body_last_block = func
.reborrow()
.at(region)
.def()
.children
.iter()
.last
.filter(|&node| {
matches!(
func.reborrow().at(node).def().kind,
ControlNodeKind::Block { .. }
)
})
.unwrap_or_else(|| {
let new_block = func.control_nodes.define(
cx,
ControlNodeDef {
kind: ControlNodeKind::Block {
insts: Default::default(),
},
outputs: Default::default(),
}
.into(),
);
func.control_regions[region]
.children
.insert_last(new_block, func.control_nodes);
new_block
});
match &mut func.control_nodes[loop_body_last_block].kind {
ControlNodeKind::Block { insts } => {
insts.insert_last(output_from_updated_state, func.data_insts);
}
_ => unreachable!(),
}
Some(Value::ControlRegionInput {
region,
input_idx: new_loop_state_idx,
})
}
Value::ControlNodeOutput {
control_node,
output_idx,
} => {
let cases = match &func.reborrow().at(control_node).def().kind {
ControlNodeKind::Select { cases, .. } => cases,
// NOTE(eddyb) only `Select`s can have outputs right now.
_ => unreachable!(),
};
// FIXME(eddyb) remove all the cloning and undo additions of new
// outputs "upstream", if they end up unused (or let DCE do it?).
let cases = cases.clone();
let per_case_new_output: SmallVec<[_; 2]> = cases
.iter()
.map(|&case| {
let per_case_input =
func.reborrow().at(case).def().outputs[output_idx as usize];
self.with_input(per_case_input).try_reduce(
cx,
func.reborrow(),
value_replacements,
parent_map,
cache,
)
})
.collect::<Option<_>>()?;
// Try to avoid introducing a new output, by reducing the merge
// of the per-case output values to a single value, if possible.
let (kind, scrutinee) = match &func.reborrow().at(control_node).def().kind {
ControlNodeKind::Select {
kind, scrutinee, ..
} => (kind, *scrutinee),
_ => unreachable!(),
};
if let Some(v) = try_reduce_select(
cx,
parent_map,
control_node,
kind,
scrutinee,
per_case_new_output.iter().copied(),
) {
return Some(v);
}
// Merge the per-case output values into a new output.
let control_node_output_decls = &mut func.reborrow().at(control_node).def().outputs;
let new_output_idx = u32::try_from(control_node_output_decls.len()).unwrap();
control_node_output_decls.push(ControlNodeOutputDecl {
attrs: Default::default(),
ty: self.output_type,
});
for (&case, new_output) in cases.iter().zip(per_case_new_output) {
let per_case_outputs = &mut func.reborrow().at(case).def().outputs;
assert_eq!(per_case_outputs.len(), new_output_idx as usize);
per_case_outputs.push(new_output);
}
Some(Value::ControlNodeOutput {
control_node,
output_idx: new_output_idx,
})
}
Value::DataInstOutput(inst) => {
let inst_def = &*func.reborrow().at(inst).def();
match self
.with_input(inst_def)
.try_reduce_output_of_data_inst(cx)?
{
ReductionStep::Complete(v) => Some(v),
// FIXME(eddyb) actually use a loop instead of recursing here.
ReductionStep::Partial(redu) => {
redu.try_reduce(cx, func, value_replacements, parent_map, cache)
}
}
}
}
}
}