1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
//! Control-flow graph (CFG) abstractions and utilities.

use crate::func_at::FuncAt;
use crate::{
    spv, AttrSet, Const, ConstCtor, ConstDef, Context, ControlNode, ControlNodeDef,
    ControlNodeKind, ControlNodeOutputDecl, ControlRegion, ControlRegionDef, EntityList,
    EntityOrientedDenseMap, FuncDefBody, FxIndexMap, SelectionKind, Type, TypeCtor, TypeDef, Value,
};
use smallvec::SmallVec;
use std::mem;

/// The control-flow graph (CFG) of a function, as control-flow instructions
/// ([`ControlInst`]s) attached to [`ControlRegion`]s, as an "action on exit", i.e.
/// "terminator" (while intra-region control-flow is strictly structured).
#[derive(Clone, Default)]
pub struct ControlFlowGraph {
    pub control_inst_on_exit_from: EntityOrientedDenseMap<ControlRegion, ControlInst>,
}

#[derive(Clone)]
pub struct ControlInst {
    pub attrs: AttrSet,

    pub kind: ControlInstKind,

    pub inputs: SmallVec<[Value; 2]>,

    // FIXME(eddyb) change the inline size of this to fit most instructions.
    pub targets: SmallVec<[ControlRegion; 4]>,

    /// `target_inputs[region][input_idx]` is the [`Value`] that
    /// `Value::ControlRegionInput { region, input_idx }` will get on entry,
    /// where `region` must be appear at least once in `targets` - this is a
    /// separate map instead of being part of `targets` because it reflects the
    /// limitations of φ ("phi") nodes, which (unlike "basic block arguments")
    /// cannot tell apart multiple edges with the same source and destination.
    pub target_inputs: FxIndexMap<ControlRegion, SmallVec<[Value; 2]>>,
}

#[derive(Clone)]
pub enum ControlInstKind {
    /// Reaching this point in the control-flow is undefined behavior, e.g.:
    /// * a `SelectBranch` case that's known to be impossible
    /// * after a function call, where the function never returns
    ///
    /// Optimizations can take advantage of this information, to assume that any
    /// necessary preconditions for reaching this point, are never met.
    Unreachable,

    /// Leave the current function, optionally returning a value.
    Return,

    /// Leave the current invocation, similar to returning from every function
    /// call in the stack (up to and including the entry-point), but potentially
    /// indicating a fatal error as well.
    ExitInvocation(ExitInvocationKind),

    /// Unconditional branch to a single target.
    Branch,

    /// Branch to one of several targets, chosen by a single value input.
    SelectBranch(SelectionKind),
}

#[derive(Clone)]
pub enum ExitInvocationKind {
    SpvInst(spv::Inst),
}

impl ControlFlowGraph {
    /// Iterate over all [`ControlRegion`]s making up `func_def_body`'s CFG, in
    /// reverse post-order (RPO).
    ///
    /// RPO iteration over a CFG provides certain guarantees, most importantly
    /// that SSA definitions are visited before any of their uses.
    pub fn rev_post_order(
        &self,
        func_def_body: &FuncDefBody,
    ) -> impl DoubleEndedIterator<Item = ControlRegion> {
        let mut post_order = SmallVec::<[_; 8]>::new();
        self.traverse_whole_func(
            func_def_body,
            &mut TraversalState {
                incoming_edge_counts: EntityOrientedDenseMap::new(),

                pre_order_visit: |_| {},
                post_order_visit: |region| post_order.push(region),

                // NOTE(eddyb) this doesn't impact semantics, but combined with
                // the final reversal, it should keep targets in the original
                // order in the cases when they didn't get deduplicated.
                reverse_targets: true,
            },
        );
        post_order.into_iter().rev()
    }
}

// HACK(eddyb) this only serves to disallow accessing `private_count` field of
// `IncomingEdgeCount`.
mod sealed {
    /// Opaque newtype for the count of incoming edges (into a [`ControlRegion`](crate::ControlRegion)).
    ///
    /// The private field prevents direct mutation or construction, forcing the
    /// use of [`IncomingEdgeCount::ONE`] and addition operations to produce some
    /// specific count (which would require explicit workarounds for misuse).
    #[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
    pub(super) struct IncomingEdgeCount(usize);

    impl IncomingEdgeCount {
        pub(super) const ONE: Self = Self(1);
    }

    impl std::ops::Add for IncomingEdgeCount {
        type Output = Self;
        fn add(self, other: Self) -> Self {
            Self(self.0 + other.0)
        }
    }

    impl std::ops::AddAssign for IncomingEdgeCount {
        fn add_assign(&mut self, other: Self) {
            *self = *self + other;
        }
    }
}
use itertools::Either;
use sealed::IncomingEdgeCount;

struct TraversalState<PreVisit: FnMut(ControlRegion), PostVisit: FnMut(ControlRegion)> {
    incoming_edge_counts: EntityOrientedDenseMap<ControlRegion, IncomingEdgeCount>,
    pre_order_visit: PreVisit,
    post_order_visit: PostVisit,

    // FIXME(eddyb) should this be a generic parameter for "targets iterator"?
    reverse_targets: bool,
}

impl ControlFlowGraph {
    fn traverse_whole_func(
        &self,
        func_def_body: &FuncDefBody,
        state: &mut TraversalState<impl FnMut(ControlRegion), impl FnMut(ControlRegion)>,
    ) {
        let func_at_body = func_def_body.at_body();

        // Quick sanity check that this is the right CFG for `func_def_body`.
        assert!(std::ptr::eq(func_def_body.unstructured_cfg.as_ref().unwrap(), self));
        assert!(func_at_body.def().outputs.is_empty());

        self.traverse(func_at_body, state);
    }

    fn traverse(
        &self,
        func_at_region: FuncAt<'_, ControlRegion>,
        state: &mut TraversalState<impl FnMut(ControlRegion), impl FnMut(ControlRegion)>,
    ) {
        let region = func_at_region.position;

        // FIXME(eddyb) `EntityOrientedDenseMap` should have an `entry` API.
        if let Some(existing_count) = state.incoming_edge_counts.get_mut(region) {
            *existing_count += IncomingEdgeCount::ONE;
            return;
        }
        state.incoming_edge_counts.insert(region, IncomingEdgeCount::ONE);

        (state.pre_order_visit)(region);

        let control_inst = self
            .control_inst_on_exit_from
            .get(region)
            .expect("cfg: missing `ControlInst`, despite having left structured control-flow");

        let targets = control_inst.targets.iter().copied();
        let targets = if state.reverse_targets {
            Either::Left(targets.rev())
        } else {
            Either::Right(targets)
        };
        for target in targets {
            self.traverse(func_at_region.at(target), state);
        }

        (state.post_order_visit)(region);
    }
}

#[allow(rustdoc::private_intra_doc_links)]
/// Control-flow "structurizer", which attempts to convert as much of the CFG
/// as possible into structural control-flow (regions).
///
/// See [`StructurizeRegionState`]'s docs for more details on the algorithm.
//
// FIXME(eddyb) document this (instead of having it on `StructurizeRegionState`).
//
// NOTE(eddyb) CFG structurizer has these stages (per-region):
//   1. absorb any deferred exits that finally have 100% refcount
//   2. absorb a single backedge deferred exit to the same region
//
//   What we could add is a third step, to handle irreducible controlflow:
//   3. check for groups of exits that have fully satisfied refcounts iff the
//     rest of the exits in the group are all added together - if so, the group
//     is *irreducible* and a single "loop header" can be created, that gets
//     the group of deferred exits, and any other occurrence of the deferred
//     exits (in either the original region, or amongst themselves) can be
//     replaced with the "loop header" with appropriate selector inputs
//
//   Sadly 3. requires a bunch of tests that are hard to craft (can rustc MIR
//   even end up in the right shape?).
//   OpenCL has `goto` so maybe it can also be used for this worse-than-diamond
//   example: `entry -> a,b,d` `a,b -> c` `a,b,c -> d` `a,b,c,d <-> a,b,c,d`
//   (the goal is avoiding a "flat group", i.e. where there is only one step
//   between every exit in the group and another exit)
pub struct Structurizer<'a> {
    cx: &'a Context,

    /// Scrutinee type for [`SelectionKind::BoolCond`].
    type_bool: Type,

    /// Scrutinee value for [`SelectionKind::BoolCond`], for the "then" case.
    const_true: Const,

    /// Scrutinee value for [`SelectionKind::BoolCond`], for the "else" case.
    const_false: Const,

    func_def_body: &'a mut FuncDefBody,
    incoming_edge_counts: EntityOrientedDenseMap<ControlRegion, IncomingEdgeCount>,

    /// Keyed by the input to `structurize_region_from` (the start [`ControlRegion`]),
    /// and describing the state of that partial structurization step.
    ///
    /// See also [`StructurizeRegionState`]'s docs.
    //
    // FIXME(eddyb) use `EntityOrientedDenseMap` (which lacks iteration by design).
    structurize_region_state: FxIndexMap<ControlRegion, StructurizeRegionState>,

    /// Accumulated replacements (caused by `target_inputs`s), i.e.:
    /// `Value::ControlRegionInput { region, input_idx }` must be replaced
    /// with `control_region_input_replacements[region][input_idx]`, as
    /// the original `region` cannot have be directly reused.
    control_region_input_replacements: EntityOrientedDenseMap<ControlRegion, SmallVec<[Value; 2]>>,
}

/// The state of one `structurize_region_from` invocation (keyed on its start
/// [`ControlRegion`] in [`Structurizer`]) and its [`PartialControlRegion`] output.
///
/// There is a fourth (or 0th) implicit state, which is where nothing has yet
/// observed some region, and [`Structurizer`] isn't tracking it at all.
//
// FIXME(eddyb) make the 0th state explicit and move `incoming_edge_counts` to it.
enum StructurizeRegionState {
    /// Structurization is still running, and observing this is a cycle.
    InProgress,

    /// Structurization completed, and this region can now be claimed.
    Ready {
        /// If this region had backedges (targeting its start [`ControlRegion`]),
        /// their bundle is taken from the region's [`DeferredEdgeBundleSet`],
        /// and kept in this field instead (for simpler/faster access).
        ///
        /// Claiming a region with backedges can combine them with the bundled
        /// edges coming into the CFG cycle from outside, and instead of failing
        /// due to the latter not being enough to claim the region on their own,
        /// actually perform loop structurization.
        backedge: Option<DeferredEdgeBundle>,

        region: PartialControlRegion,
    },

    /// Region was claimed (by an [`IncomingEdgeBundle`], with the appropriate
    /// total [`IncomingEdgeCount`], minus any `consumed_backedges`), and has
    /// since likely been incorporated as part of some larger region.
    Claimed,
}

/// An "(incoming) edge bundle" is a subset of the edges into a single `target`.
///
/// When `accumulated_count` reaches the total [`IncomingEdgeCount`] for `target`,
/// that [`IncomingEdgeBundle`] is said to "effectively own" its `target` (akin to
/// the more commonly used CFG domination relation, but more "incremental").
struct IncomingEdgeBundle {
    target: ControlRegion,
    accumulated_count: IncomingEdgeCount,

    /// The [`Value`]s that `Value::ControlRegionInput { region, .. }` will get
    /// on entry into `region`, through this "edge bundle".
    target_inputs: SmallVec<[Value; 2]>,
}

/// A "deferred (incoming) edge bundle" is an [`IncomingEdgeBundle`] that cannot
/// be structurized immediately, but instead waits for its `accumulated_count`
/// to reach the full count of its `target`, before it can grafted into some
/// structured control-flow region.
///
/// While in the "deferred" state, its can accumulate a non-trivial `condition`,
/// every time it's propagated to an "outer" region, e.g. for this pseudocode:
/// ```text
/// if a {
///     branch => label1
/// } else {
///     if b {
///         branch => label1
///     }
/// }
/// ```
/// the deferral of branches to `label1` will result in:
/// ```text
/// label1_condition = if a {
///     true
/// } else {
///     if b {
///         true
///     } else {
///         false
///     }
/// }
/// if label1_condition {
///     branch => label1
/// }
/// ```
/// which could theoretically be simplified (after the [`Structurizer`]) to:
/// ```text
/// label1_condition = a | b
/// if label1_condition {
///     branch => label1
/// }
/// ```
struct DeferredEdgeBundle {
    condition: Value,
    edge_bundle: IncomingEdgeBundle,
}

/// Set of [`DeferredEdgeBundle`]s, uniquely keyed by their `target`s.
struct DeferredEdgeBundleSet {
    // FIXME(eddyb) this field requires this invariant to be maintained:
    // `target_to_deferred[target].edge_bundle.target == target` - but that's
    // a bit wasteful and also not strongly controlled either - maybe seal this?
    target_to_deferred: FxIndexMap<ControlRegion, DeferredEdgeBundle>,
}

/// Partially structurized [`ControlRegion`], the result of combining together
/// several smaller [`ControlRegion`]s, based on CFG edges between them.
struct PartialControlRegion {
    // FIXME(eddyb) keep this in the original `ControlRegion` instead.
    children: EntityList<ControlNode>,

    /// When not all transitive targets could be claimed into the [`ControlRegion`],
    /// some remain as deferred exits, blocking further structurization until
    /// all other edges to those targets are gathered together.
    ///
    /// If both `deferred_edges` is empty and `deferred_return` is `None`, then
    /// the [`ControlRegion`] never exits, i.e. it has divergent control-flow
    /// (such as an infinite loop).
    deferred_edges: DeferredEdgeBundleSet,

    /// Structured "return" out of the function (holding `output`s for the
    /// function body, i.e. the inputs to the [`ControlInstKind::Return`]).
    ///
    /// Unlike [`DeferredEdgeBundle`], this doesn't need a condition, as it's
    /// effectively a "fallback", only used when `deferred_edges` is empty.
    deferred_return: Option<SmallVec<[Value; 2]>>,
}

impl<'a> Structurizer<'a> {
    pub fn new(cx: &'a Context, func_def_body: &'a mut FuncDefBody) -> Self {
        // FIXME(eddyb) SPIR-T should have native booleans itself.
        let wk = &spv::spec::Spec::get().well_known;
        let type_bool = cx.intern(TypeDef {
            attrs: AttrSet::default(),
            ctor: TypeCtor::SpvInst(wk.OpTypeBool.into()),
            ctor_args: [].into_iter().collect(),
        });
        let const_true = cx.intern(ConstDef {
            attrs: AttrSet::default(),
            ty: type_bool,
            ctor: ConstCtor::SpvInst(wk.OpConstantTrue.into()),
            ctor_args: [].into_iter().collect(),
        });
        let const_false = cx.intern(ConstDef {
            attrs: AttrSet::default(),
            ty: type_bool,
            ctor: ConstCtor::SpvInst(wk.OpConstantFalse.into()),
            ctor_args: [].into_iter().collect(),
        });

        let incoming_edge_counts = func_def_body
            .unstructured_cfg
            .as_ref()
            .map(|cfg| {
                let mut state = TraversalState {
                    incoming_edge_counts: EntityOrientedDenseMap::new(),

                    pre_order_visit: |_| {},
                    post_order_visit: |_| {},
                    reverse_targets: false,
                };
                cfg.traverse_whole_func(func_def_body, &mut state);
                state.incoming_edge_counts
            })
            .unwrap_or_default();

        Self {
            cx,
            type_bool,
            const_true,
            const_false,

            func_def_body,
            incoming_edge_counts,

            structurize_region_state: FxIndexMap::default(),
            control_region_input_replacements: EntityOrientedDenseMap::new(),
        }
    }

    pub fn structurize_func(mut self) {
        // Don't even try to re-structurize functions.
        if self.func_def_body.unstructured_cfg.is_none() {
            return;
        }

        let body_region = self.claim_or_defer_single_edge(self.func_def_body.body, SmallVec::new());

        if body_region.deferred_edges.target_to_deferred.is_empty() {
            // Structured return, the function is fully structurized.
            //
            // FIXME(eddyb) also support structured return when the whole body
            // is divergent, by generating undef constants (needs access to the
            // whole `FuncDecl`, not just `FuncDefBody`, to get the right types).
            if let Some(return_values) = body_region.deferred_return {
                let body_def = self.func_def_body.at_mut_body().def();
                body_def.children = body_region.children;
                body_def.outputs = return_values;
                self.func_def_body.unstructured_cfg = None;

                self.apply_value_replacements();
                return;
            }
        }

        // Repair all the regions that remain unclaimed, including the body.
        let structurize_region_state =
            mem::take(&mut self.structurize_region_state).into_iter().chain([(
                self.func_def_body.body,
                StructurizeRegionState::Ready { region: body_region, backedge: None },
            )]);
        for (target, state) in structurize_region_state {
            if let StructurizeRegionState::Ready { mut region, backedge } = state {
                // Undo `backedge` extraction from deferred edges, if needed.
                if let Some(backedge) = backedge {
                    assert!(
                        region
                            .deferred_edges
                            .target_to_deferred
                            .insert(backedge.edge_bundle.target, backedge)
                            .is_none()
                    );
                }

                self.repair_unclaimed_region(target, region);
            }
        }

        self.apply_value_replacements();
    }

    /// The last step of structurization is processing bulk replacements
    /// collected while structurizing (like `control_region_input_replacements`).
    fn apply_value_replacements(self) {
        // FIXME(eddyb) maybe this should be provided by `transform`.
        use crate::transform::*;
        struct ReplaceValueWith<F>(F);
        impl<F: Fn(Value) -> Option<Value>> Transformer for ReplaceValueWith<F> {
            fn transform_value_use(&mut self, v: &Value) -> Transformed<Value> {
                self.0(*v).map_or(Transformed::Unchanged, Transformed::Changed)
            }
        }

        self.func_def_body.inner_in_place_transform_with(&mut ReplaceValueWith(|v| match v {
            Value::ControlRegionInput { region, input_idx } => {
                Some(self.control_region_input_replacements.get(region)?[input_idx as usize])
            }
            _ => None,
        }));
    }

    fn claim_or_defer_single_edge(
        &mut self,
        target: ControlRegion,
        target_inputs: SmallVec<[Value; 2]>,
    ) -> PartialControlRegion {
        self.try_claim_edge_bundle(IncomingEdgeBundle {
            target,
            accumulated_count: IncomingEdgeCount::ONE,
            target_inputs,
        })
        .unwrap_or_else(|deferred| PartialControlRegion {
            children: EntityList::empty(),
            deferred_edges: DeferredEdgeBundleSet {
                target_to_deferred: [(deferred.edge_bundle.target, deferred)].into_iter().collect(),
            },
            deferred_return: None,
        })
    }

    fn try_claim_edge_bundle(
        &mut self,
        mut edge_bundle: IncomingEdgeBundle,
    ) -> Result<PartialControlRegion, DeferredEdgeBundle> {
        let target = edge_bundle.target;

        // Always attempt structurization before checking the `IncomingEdgeCount`,
        // to be able to make use of backedges (if any were found).
        if self.structurize_region_state.get(&target).is_none() {
            self.structurize_region_from(target);
        }

        let backedge = match &self.structurize_region_state[&target] {
            // This `try_claim_edge_bundle` call is itself a backedge, and it's
            // coherent to not let any of them claim the loop itself, and only
            // allow claiming the whole loop (if successfully structurized).
            StructurizeRegionState::InProgress => None,

            StructurizeRegionState::Ready { backedge, .. } => backedge.as_ref(),

            StructurizeRegionState::Claimed => {
                unreachable!("cfg::Structurizer::try_claim_edge_bundle: already claimed");
            }
        };
        let backedge_count = backedge.map(|e| e.edge_bundle.accumulated_count).unwrap_or_default();

        if self.incoming_edge_counts[target] != edge_bundle.accumulated_count + backedge_count {
            return Err(DeferredEdgeBundle {
                condition: Value::Const(self.const_true),
                edge_bundle,
            });
        }

        let state =
            self.structurize_region_state.insert(target, StructurizeRegionState::Claimed).unwrap();

        let (backedge, mut region) = match state {
            StructurizeRegionState::InProgress => unreachable!(
                "cfg::Structurizer::try_claim_edge_bundle: cyclic calls \
                 should not get this far"
            ),

            StructurizeRegionState::Ready { backedge, region } => (backedge, region),

            StructurizeRegionState::Claimed => {
                // Handled above.
                unreachable!()
            }
        };

        // If the target contains any backedge to itself, that's a loop, with:
        // * entry: `edge_bundle` (unconditional, i.e. `do`-`while`-like)
        // * body: `region.children`
        // * repeat ("continue") edge: `backedge` (with its `condition`)
        // * exit ("break") edges: `region.successor` (must be `Deferred`)
        if let Some(backedge) = backedge {
            let DeferredEdgeBundle { condition: repeat_condition, edge_bundle: backedge } =
                backedge;
            assert!(backedge.target == target);

            // If the body starts at a region with any `inputs`, receiving values
            // from both the loop entry and the backedge, that has to become
            // "loop state" (with values being passed to `body` `inputs`, i.e.
            // the structurized `body` region as a whole takes the same `inputs`).
            let body_inputs: SmallVec<[_; 2]> = self.func_def_body.at(target).def().inputs.clone();
            let initial_inputs = edge_bundle.target_inputs;
            let body_outputs = backedge.target_inputs;
            assert_eq!(initial_inputs.len(), body_inputs.len());
            assert_eq!(body_outputs.len(), body_inputs.len());

            let body = self.func_def_body.control_regions.define(
                self.cx,
                ControlRegionDef {
                    inputs: body_inputs,
                    children: region.children,
                    outputs: body_outputs,
                },
            );

            // The last step of turning `edge_bundle` into the complete merge of
            // the loop entry and its backedge, is to supply the structured
            // `body` `inputs` as the `target_inputs`, so that they can be
            // inserted into `control_region_input_replacements` below.
            //
            // FIXME(eddyb) if the original body region (`target`) were kept,
            // it would remove the need for all of this rewriting.
            edge_bundle.target_inputs = initial_inputs
                .iter()
                .enumerate()
                .map(|(input_idx, _)| Value::ControlRegionInput {
                    region: body,
                    input_idx: input_idx.try_into().unwrap(),
                })
                .collect();

            let loop_node = self.func_def_body.control_nodes.define(
                self.cx,
                ControlNodeDef {
                    kind: ControlNodeKind::Loop { initial_inputs, body, repeat_condition },
                    outputs: [].into_iter().collect(),
                }
                .into(),
            );

            // Replace the region with the whole loop, any exits out of the loop
            // being encoded in `region.deferred_*`.
            region.children = EntityList::empty();
            region.children.insert_last(loop_node, &mut self.func_def_body.control_nodes);
        }

        if !edge_bundle.target_inputs.is_empty() {
            self.control_region_input_replacements.insert(target, edge_bundle.target_inputs);
        }

        Ok(region)
    }

    /// Structurize a region starting from `unstructured_region`, and extending
    /// it (by combining the smaller [`ControlRegion`]s) as much as possible into
    /// the CFG (likely everything dominated by `unstructured_region`).
    ///
    /// The output of this process is stored in, and any other bookkeeping is
    /// done through, `self.structurize_region_state[unstructured_region]`.
    ///
    /// See also [`StructurizeRegionState`]'s docs.
    fn structurize_region_from(&mut self, unstructured_region: ControlRegion) {
        {
            let old_state = self
                .structurize_region_state
                .insert(unstructured_region, StructurizeRegionState::InProgress);
            if let Some(old_state) = old_state {
                unreachable!(
                    "cfg::Structurizer::structurize_region_from: \
                     already {}, when attempting to start structurization",
                    match old_state {
                        StructurizeRegionState::InProgress => "in progress (cycle detected)",
                        StructurizeRegionState::Ready { .. } => "completed",
                        StructurizeRegionState::Claimed => "claimed",
                    }
                );
            }
        }

        let control_inst = self
            .func_def_body
            .unstructured_cfg
            .as_mut()
            .unwrap()
            .control_inst_on_exit_from
            .remove(unstructured_region)
            .expect(
                "cfg::Structurizer::structurize_region_from: missing \
                   `ControlInst` (CFG wasn't unstructured in the first place?)",
            );

        /// Marker error type for unhandled [`ControlInst`]s below.
        struct UnsupportedControlInst(ControlInst);

        let region_from_control_inst = {
            let ControlInst { attrs, kind, inputs, targets, target_inputs } = control_inst;

            // FIXME(eddyb) this loses `attrs`.
            let _ = attrs;

            let child_regions: SmallVec<[_; 8]> = targets
                .iter()
                .map(|&target| {
                    self.claim_or_defer_single_edge(
                        target,
                        target_inputs.get(&target).cloned().unwrap_or_default(),
                    )
                })
                .collect();

            match kind {
                ControlInstKind::Unreachable => {
                    assert_eq!((inputs.len(), child_regions.len()), (0, 0));

                    // FIXME(eddyb) this may result in lost optimizations over
                    // actually encoding it in `ControlNode`/`ControlRegion`
                    // (e.g. a new `ControlKind`, or replacing region `outputs`),
                    // but it's simpler to handle it like this.
                    Ok(PartialControlRegion {
                        children: EntityList::empty(),
                        deferred_edges: DeferredEdgeBundleSet {
                            target_to_deferred: [].into_iter().collect(),
                        },
                        deferred_return: None,
                    })
                }

                ControlInstKind::ExitInvocation(_) => {
                    assert_eq!(child_regions.len(), 0);

                    // FIXME(eddyb) introduce equivalent `ControlNodeKind` for these.
                    Err(UnsupportedControlInst(ControlInst {
                        attrs,
                        kind,
                        inputs,
                        targets,
                        target_inputs,
                    }))
                }

                ControlInstKind::Return => {
                    assert_eq!(child_regions.len(), 0);

                    Ok(PartialControlRegion {
                        children: EntityList::empty(),
                        deferred_edges: DeferredEdgeBundleSet {
                            target_to_deferred: [].into_iter().collect(),
                        },
                        deferred_return: Some(inputs),
                    })
                }

                ControlInstKind::Branch => {
                    assert_eq!((inputs.len(), child_regions.len()), (0, 1));

                    Ok(child_regions.into_iter().next().unwrap())
                }

                ControlInstKind::SelectBranch(kind) => {
                    assert_eq!(inputs.len(), 1);

                    let scrutinee = inputs[0];

                    Ok(self.structurize_select(kind, scrutinee, child_regions))
                }
            }
        };

        let region_from_control_inst =
            region_from_control_inst.unwrap_or_else(|UnsupportedControlInst(control_inst)| {
                // HACK(eddyb) this only remains used for `ExitInvocation`.
                assert!(control_inst.targets.is_empty());

                // HACK(eddyb) attach the unsupported `ControlInst` to a fresh
                // new "proxy" `ControlRegion`, that can then be the target of
                // a deferred edge, specially crafted to be unclaimable.
                let proxy = self.func_def_body.control_regions.define(
                    self.cx,
                    ControlRegionDef {
                        inputs: [].into_iter().collect(),
                        children: EntityList::empty(),
                        outputs: [].into_iter().collect(),
                    },
                );
                self.func_def_body
                    .unstructured_cfg
                    .as_mut()
                    .unwrap()
                    .control_inst_on_exit_from
                    .insert(proxy, control_inst);
                self.structurize_region_state.insert(proxy, StructurizeRegionState::InProgress);
                self.incoming_edge_counts.insert(proxy, IncomingEdgeCount::ONE);
                let deferred_proxy = DeferredEdgeBundle {
                    condition: Value::Const(self.const_true),
                    edge_bundle: IncomingEdgeBundle {
                        target: proxy,
                        accumulated_count: IncomingEdgeCount::default(),
                        target_inputs: [].into_iter().collect(),
                    },
                };

                PartialControlRegion {
                    children: EntityList::empty(),
                    deferred_edges: DeferredEdgeBundleSet {
                        target_to_deferred: [deferred_proxy]
                            .into_iter()
                            .map(|d| (d.edge_bundle.target, d))
                            .collect(),
                    },
                    deferred_return: None,
                }
            });

        // Prepend `unstructured_region`'s children to `region_from_control_inst`.
        let mut region = {
            let mut children = self.func_def_body.at(unstructured_region).def().children;

            children
                .append(region_from_control_inst.children, &mut self.func_def_body.control_nodes);

            // HACK(eddyb) this updates `unstructured_region` just in case
            // `repair_unclaimed_region` needs to use it again. But it would be
            // better if `PartialControlRegion` didn't have a `children` copy.
            self.func_def_body.at_mut(unstructured_region).def().children = children;

            PartialControlRegion { children, ..region_from_control_inst }
        };

        // Try to resolve deferred edges that may have accumulated, and keep
        // going until there's no more deferred edges that can be claimed.
        let try_claim_any_deferred_edge =
            |this: &mut Self, deferred_edges: &mut DeferredEdgeBundleSet| {
                for (i, deferred) in deferred_edges.target_to_deferred.values_mut().enumerate() {
                    // HACK(eddyb) "take" `deferred.edge_bundle` so it can be
                    // passed to `try_claim_edge_bundle` (and put back if `Err`).
                    let DeferredEdgeBundle { condition, ref mut edge_bundle } = *deferred;
                    let taken_edge_bundle = IncomingEdgeBundle {
                        target: edge_bundle.target,
                        accumulated_count: edge_bundle.accumulated_count,
                        target_inputs: mem::take(&mut edge_bundle.target_inputs),
                    };

                    match this.try_claim_edge_bundle(taken_edge_bundle) {
                        Ok(claimed_region) => {
                            // FIXME(eddyb) should this use `swap_remove_index`?
                            deferred_edges.target_to_deferred.shift_remove_index(i);
                            return Some((condition, claimed_region));
                        }

                        // Put back the `IncomingEdgeBundle` and keep looking.
                        Err(new_deferred) => *edge_bundle = new_deferred.edge_bundle,
                    }
                }
                None
            };
        while let Some((condition, then_region)) =
            try_claim_any_deferred_edge(self, &mut region.deferred_edges)
        {
            let else_region = PartialControlRegion { children: EntityList::empty(), ..region };
            let else_is_unreachable = else_region.deferred_edges.target_to_deferred.is_empty()
                && else_region.deferred_return.is_none();

            // `then_region` is only taken if `condition` holds, except that
            // `condition` can be ignored when `else_region` is unreachable.
            let mut merged_region = if else_is_unreachable {
                then_region
            } else {
                self.structurize_select(
                    SelectionKind::BoolCond,
                    condition,
                    [then_region, else_region].into_iter().collect(),
                )
            };

            // Prepend the original children to the freshly merged region.
            merged_region.children.prepend(region.children, &mut self.func_def_body.control_nodes);

            region = merged_region;
        }

        // Try to extract (deferred) backedges (which later get turned into loops).
        let backedge = region.deferred_edges.target_to_deferred.remove(&unstructured_region);

        let old_state = self
            .structurize_region_state
            .insert(unstructured_region, StructurizeRegionState::Ready { backedge, region });
        if !matches!(old_state, Some(StructurizeRegionState::InProgress)) {
            unreachable!(
                "cfg::Structurizer::structurize_region_from: \
                 already {}, when attempting to store structurization result",
                match old_state {
                    None => "reverted to missing (removed from the map?)",
                    Some(StructurizeRegionState::InProgress) => unreachable!(),
                    Some(StructurizeRegionState::Ready { .. }) => "completed",
                    Some(StructurizeRegionState::Claimed) => "claimed",
                }
            );
        }
    }

    /// Build a `Select` [`ControlNode`], from partially structured `cases`,
    /// merging all of their `deferred_{edges,returns}` together.
    fn structurize_select(
        &mut self,
        kind: SelectionKind,
        scrutinee: Value,
        cases: SmallVec<[PartialControlRegion; 8]>,
    ) -> PartialControlRegion {
        // `Select` isn't actually needed unless there's at least two `cases`.
        if cases.len() <= 1 {
            return cases.into_iter().next().unwrap_or_else(|| PartialControlRegion {
                children: EntityList::empty(),
                deferred_edges: DeferredEdgeBundleSet {
                    target_to_deferred: [].into_iter().collect(),
                },
                deferred_return: None,
            });
        }

        // Gather the full set of deferred edges (and returns), along with the
        // necessary information for the `Select`'s `ControlNodeOutputDecl`s.
        let mut deferred_edges_to_input_count_and_total_edge_count = FxIndexMap::default();
        let mut deferred_return_types = None;
        for case in &cases {
            for (&target, deferred) in &case.deferred_edges.target_to_deferred {
                let input_count = deferred.edge_bundle.target_inputs.len();

                let (old_input_count, accumulated_edge_count) =
                    deferred_edges_to_input_count_and_total_edge_count
                        .entry(target)
                        .or_insert((input_count, IncomingEdgeCount::default()));
                assert_eq!(*old_input_count, input_count);
                *accumulated_edge_count += deferred.edge_bundle.accumulated_count;
            }
            if let Some(return_values) = &case.deferred_return {
                // HACK(eddyb) because there's no `FuncDecl` available, take the
                // types from the returned values and hope they match.
                deferred_return_types =
                    Some(return_values.iter().map(|&v| self.func_def_body.at(v).type_of(self.cx)));
            }
        }
        let deferred_return_value_count = deferred_return_types.clone().map(|tys| tys.len());

        // Avoid computing deferral conditions when the target isn't ambiguous.
        let needs_per_deferred_edge_condition =
            deferred_edges_to_input_count_and_total_edge_count.len() > 1
                || deferred_return_types.is_some();

        // The `Select` outputs are the concatenation of:
        // * for each unique `deferred_edges` target:
        //   * condition (only if `needs_per_deferred_edge_condition` - see above)
        //   * `target_inputs`
        // * `deferred_return` values (if needed)
        //
        // FIXME(eddyb) some of this could maybe be generalized to deferred infra.
        enum Deferred {
            Edge {
                target: ControlRegion,
                // NOTE(eddyb) not including condition, only `target_inputs`.
                target_input_count: usize,

                /// Sum of `accumulated_count` for this `target` across all `cases`.
                total_edge_count: IncomingEdgeCount,
            },
            Return {
                value_count: usize,
            },
        }
        let deferreds = || {
            deferred_edges_to_input_count_and_total_edge_count
                .iter()
                .map(|(&target, &(target_input_count, total_edge_count))| Deferred::Edge {
                    target,
                    target_input_count,
                    total_edge_count,
                })
                .chain(
                    deferred_return_value_count.map(|value_count| Deferred::Return { value_count }),
                )
        };
        let mut output_decls: SmallVec<[_; 2]> = SmallVec::with_capacity(
            deferreds()
                .map(|deferred| match deferred {
                    Deferred::Edge { target_input_count, .. } => {
                        (needs_per_deferred_edge_condition as usize) + target_input_count
                    }
                    Deferred::Return { value_count } => value_count,
                })
                .sum(),
        );
        for deferred in deferreds() {
            let output_decl_from_ty = |ty| ControlNodeOutputDecl { attrs: AttrSet::default(), ty };
            match deferred {
                Deferred::Edge { target, target_input_count, .. } => {
                    let target_inputs = &self.func_def_body.at(target).def().inputs;
                    assert_eq!(target_inputs.len(), target_input_count);

                    if needs_per_deferred_edge_condition {
                        output_decls.push(output_decl_from_ty(self.type_bool));
                    }
                    output_decls.extend(target_inputs.iter().map(|i| output_decl_from_ty(i.ty)));
                }
                Deferred::Return { value_count } => {
                    let types = deferred_return_types.clone().unwrap();
                    assert_eq!(types.len(), value_count);

                    output_decls.extend(types.map(output_decl_from_ty));
                }
            }
        }

        // Convert the cases into `ControlRegion`s, each outputting the full set
        // of values described by `outputs` (with undef filling in any gaps).
        let cases = cases
            .into_iter()
            .map(|case| {
                let PartialControlRegion { children, mut deferred_edges, mut deferred_return } =
                    case;

                let mut outputs = SmallVec::with_capacity(output_decls.len());
                for deferred in deferreds() {
                    let (edge_condition, values_or_count) = match deferred {
                        Deferred::Edge { target, target_input_count, .. } => match deferred_edges
                            .target_to_deferred
                            .remove(&target)
                        {
                            Some(DeferredEdgeBundle { condition, edge_bundle }) => {
                                (Some(condition), Ok(edge_bundle.target_inputs))
                            }

                            None => (Some(Value::Const(self.const_false)), Err(target_input_count)),
                        },
                        Deferred::Return { value_count } => {
                            (None, deferred_return.take().ok_or(value_count))
                        }
                    };

                    if needs_per_deferred_edge_condition {
                        outputs.extend(edge_condition);
                    }
                    match values_or_count {
                        Ok(values) => outputs.extend(values),
                        Err(missing_value_count) => {
                            let decls_for_missing_values =
                                &output_decls[outputs.len()..][..missing_value_count];
                            outputs.extend(
                                decls_for_missing_values
                                    .iter()
                                    .map(|output| Value::Const(self.const_undef(output.ty))),
                            );
                        }
                    }
                }

                // All deferrals must have been converted into outputs above.
                assert!(deferred_edges.target_to_deferred.is_empty() && deferred_return.is_none());
                assert_eq!(outputs.len(), output_decls.len());

                self.func_def_body.control_regions.define(
                    self.cx,
                    ControlRegionDef { inputs: [].into_iter().collect(), children, outputs },
                )
            })
            .collect();

        let kind = ControlNodeKind::Select { kind, scrutinee, cases };
        let select_node = self
            .func_def_body
            .control_nodes
            .define(self.cx, ControlNodeDef { kind, outputs: output_decls }.into());

        // Build `deferred_{edges,return}` for the whole `Select`, pointing to
        // the outputs of the `select_node` `ControlNode` for all `Value`s.
        let mut deferred_edges =
            DeferredEdgeBundleSet { target_to_deferred: FxIndexMap::default() };
        let mut deferred_return = None;

        let mut outputs = (0..)
            .map(|output_idx| Value::ControlNodeOutput { control_node: select_node, output_idx });
        for deferred in deferreds() {
            match deferred {
                Deferred::Edge { target, target_input_count, total_edge_count } => {
                    let condition = if needs_per_deferred_edge_condition {
                        outputs.next().unwrap()
                    } else {
                        Value::Const(self.const_true)
                    };
                    let target_inputs = outputs.by_ref().take(target_input_count).collect();

                    deferred_edges.target_to_deferred.insert(
                        target,
                        DeferredEdgeBundle {
                            condition,
                            edge_bundle: IncomingEdgeBundle {
                                target,
                                accumulated_count: total_edge_count,
                                target_inputs,
                            },
                        },
                    );
                }
                Deferred::Return { value_count } => {
                    assert!(deferred_return.is_none());
                    deferred_return = Some(outputs.by_ref().take(value_count).collect());
                }
            }
        }

        let mut children = EntityList::empty();
        children.insert_last(select_node, &mut self.func_def_body.control_nodes);
        PartialControlRegion { children, deferred_edges, deferred_return }
    }

    /// When structurization is only partial, and there remain unclaimed regions,
    /// they have to be reintegrated into the CFG, putting back [`ControlInst`]s
    /// where `structurize_region_from` has taken them from.
    ///
    /// This function handles one region at a time to make it more manageable,
    /// despite it having a single call site (in a loop in `structurize_func`).
    fn repair_unclaimed_region(
        &mut self,
        unstructured_region: ControlRegion,
        partial_control_region: PartialControlRegion,
    ) {
        assert!(
            self.structurize_region_state.is_empty(),
            "cfg::Structurizer::repair_unclaimed_region: must only be called \
             from `structurize_func`, after it takes `structurize_region_state`"
        );

        let PartialControlRegion { children, deferred_edges, deferred_return } =
            partial_control_region;

        // HACK(eddyb) this'd be unnecessary if `PartialControlRegion` didn't
        // hold `children` (and the original `ControlRegion` was relied upon).
        {
            let list_eq_key = |l: EntityList<_>| (l.iter().first, l.iter().last);
            assert!(
                list_eq_key(children)
                    == list_eq_key(self.func_def_body.at(unstructured_region).def().children)
            );
        }

        // Build a chain of conditional branches to apply deferred edges.
        let mut deferred_edge_targets =
            deferred_edges.target_to_deferred.into_iter().map(|(_, deferred)| {
                (
                    deferred.condition,
                    (deferred.edge_bundle.target, deferred.edge_bundle.target_inputs),
                )
            });
        let mut control_source = Some(unstructured_region);
        while let Some((condition, then_target_and_inputs)) = deferred_edge_targets.next() {
            let branch_source = control_source.take().unwrap();
            let else_target_and_inputs =
                if deferred_edge_targets.len() <= 1 && deferred_return.is_none() {
                    // At most one deferral left, so it can be used as the "else"
                    // case, or the branch left unconditional in its absence.
                    deferred_edge_targets.next().map(|(_, t)| t)
                } else {
                    // Either more branches, or a deferred return, are needed, so
                    // the "else" case must be a `ControlRegion` that itself can
                    // have a `ControlInst` attached to it later on.
                    let new_empty_region = self.func_def_body.control_regions.define(
                        self.cx,
                        ControlRegionDef {
                            inputs: [].into_iter().collect(),
                            children: EntityList::empty(),
                            outputs: [].into_iter().collect(),
                        },
                    );
                    control_source = Some(new_empty_region);
                    Some((new_empty_region, [].into_iter().collect()))
                };

            let condition = Some(condition).filter(|_| else_target_and_inputs.is_some());
            let branch_control_inst = ControlInst {
                attrs: AttrSet::default(),
                kind: if condition.is_some() {
                    ControlInstKind::SelectBranch(SelectionKind::BoolCond)
                } else {
                    ControlInstKind::Branch
                },
                inputs: condition.into_iter().collect(),
                targets: [&then_target_and_inputs]
                    .into_iter()
                    .chain(&else_target_and_inputs)
                    .map(|&(target, _)| target)
                    .collect(),
                target_inputs: [then_target_and_inputs]
                    .into_iter()
                    .chain(else_target_and_inputs)
                    .filter(|(_, inputs)| !inputs.is_empty())
                    .collect(),
            };
            assert!(
                self.func_def_body
                    .unstructured_cfg
                    .as_mut()
                    .unwrap()
                    .control_inst_on_exit_from
                    .insert(branch_source, branch_control_inst)
                    .is_none()
            );
        }

        let final_source = match control_source {
            Some(region) => region,
            None => {
                // The loop above handled all the targets, nothing left to do.
                assert!(deferred_return.is_none());
                return;
            }
        };

        // Final deferral is either a `Return` (if needed), or an `Unreachable`
        // (only when truly divergent, i.e. no `deferred_edges`/`deferred_return`).
        let final_control_inst = {
            let (kind, inputs) = match deferred_return {
                Some(return_values) => (ControlInstKind::Return, return_values),
                None => (ControlInstKind::Unreachable, [].into_iter().collect()),
            };
            ControlInst {
                attrs: AttrSet::default(),
                kind,
                inputs,
                targets: [].into_iter().collect(),
                target_inputs: FxIndexMap::default(),
            }
        };
        assert!(
            self.func_def_body
                .unstructured_cfg
                .as_mut()
                .unwrap()
                .control_inst_on_exit_from
                .insert(final_source, final_control_inst)
                .is_none()
        );
    }

    /// Create an undefined constant (as a placeholder where a value needs to be
    /// present, but won't actually be used), of type `ty`.
    fn const_undef(&self, ty: Type) -> Const {
        // FIXME(eddyb) SPIR-T should have native undef itself.
        let wk = &spv::spec::Spec::get().well_known;
        self.cx.intern(ConstDef {
            attrs: AttrSet::default(),
            ty,
            ctor: ConstCtor::SpvInst(wk.OpUndef.into()),
            ctor_args: [].into_iter().collect(),
        })
    }
}