1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
//! [`Context`](struct.Context.html) and related types/traits.
use crate::spv::spec::ExtInstSetDesc;
use rustc_hash::FxHashMap;
use std::hash::Hash;
use std::mem;
use std::num::NonZeroU32;
use std::ops::{Deref, DerefMut};
/// Context object with global resources for SPIR-T.
///
/// Those resources currently are:
/// * interners, for anything without an identity, and which can be deduplicated
/// * "entity" allocators, for everything else - i.e. anything with an identity
/// that needs to remain unique across an entire [`Context`]
/// * the *definition* of an entity isn't kept in the [`Context`], but rather in
/// some [`EntityDefs`] collection somewhere in a [`Module`](crate::Module) (or further nested),
/// with only the entity *indices* being allocated by the [`Context`]
/// * custom SPIR-V "extended instruction set" descriptions, which can be
/// dynamically registered, to account for any such "extended instruction set"
/// not covered by [`spv::spec::Spec`](crate::spv::spec::Spec)'s built-in list
/// (e.g. non-standard tool-specific sets), and only used for pretty-printing
#[derive(Default)]
pub struct Context {
interners: Interners,
entity_allocs: EntityAllocs,
custom_spv_ext_inst_set_descs: elsa::FrozenBTreeMap<String, Box<ExtInstSetDesc>>,
}
impl Context {
/// Register a custom [`ExtInstSetDesc`] with name `ext_inst_set_name`,
/// to be used by pretty-printing when using this [`Context`].
pub fn register_custom_ext_inst_set(
&self,
ext_inst_set_name: &str,
ext_inst_set_desc: ExtInstSetDesc,
) {
let lowercase_ext_inst_set_name = ext_inst_set_name.to_ascii_lowercase();
assert!(
self.get_custom_ext_inst_set_by_lowercase_name(&lowercase_ext_inst_set_name).is_none(),
"already registered {lowercase_ext_inst_set_name:?} \
(name before lowercasing: {ext_inst_set_name})"
);
self.custom_spv_ext_inst_set_descs
.insert(lowercase_ext_inst_set_name, Box::new(ext_inst_set_desc));
}
/// Return a custom [`ExtInstSetDesc`], if one was registered on this [`Context`],
/// for this `OpExtInstImport` name (required to be lowercase, due to Khronos'
/// choice of case insensitivity, but **not checked by this function**).
pub fn get_custom_ext_inst_set_by_lowercase_name(
&self,
lowercase_ext_inst_set_name: &str,
) -> Option<&ExtInstSetDesc> {
self.custom_spv_ext_inst_set_descs.get(lowercase_ext_inst_set_name)
}
}
/// Private module containing traits (and related types) used in public APIs,
/// but which should not be usable outside of the `context` module.
mod sealed {
use std::cell::Cell;
use std::num::NonZeroU32;
pub trait Interned: Sized + 'static {
type Def: ?Sized + Eq + std::hash::Hash;
fn preintern(_interner: &Interner<Self>) {}
fn from_u32(i: u32) -> Self;
fn to_u32(self) -> u32;
fn cx_interner(cx: &super::Context) -> &Interner<Self>;
}
// FIXME(eddyb) one `Box` per element is inefficient, figure out if e.g.
// the `rental` crate could allow keeping an `arena: TypedArena<I::Def>`
// alongside the `FrozenIndexSet` (which would then use `&'arena I::Def`).
pub struct Interner<I: Interned>(
elsa::FrozenIndexSet<Box<I::Def>, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>,
);
impl<I: Interned> Default for Interner<I> {
fn default() -> Self {
let interner = Self(Default::default());
I::preintern(&interner);
interner
}
}
impl<I: Interned> Interner<I> {
#[track_caller]
pub(super) fn intern(&self, value: impl AsRef<I::Def> + Into<Box<I::Def>>) -> I {
if let Some((i, _)) = self.0.get_full(value.as_ref()) {
return I::from_u32(i as u32);
}
let (i, _) = self.0.insert_full(value.into());
I::from_u32(i.try_into().expect("interner overflowed u32"))
}
}
impl<I: Interned> std::ops::Index<I> for Interner<I> {
type Output = I::Def;
fn index(&self, interned: I) -> &Self::Output {
&self.0[interned.to_u32() as usize]
}
}
// FIXME(eddyb) reflect "is an `Entity`" in a non-sealed way, by having an
// e.g. `pub trait IsEntity: Entity {}` w/ a blanket impl, that users could
// not implement themselves because of the `Entity` requirement, but could
// still bound on, and it would imply `Entity` as needed - this could even
// be named `Entity`, with `sealed::Entity` only used (by `context`) for:
// - `impl sealed::Entity for $name` to define an entity
// - `use sealed::Entity as _;` to use associated items from the trait
pub trait Entity: Sized + Copy + Eq + std::hash::Hash + 'static {
type Def;
const CHUNK_SIZE: u32;
const CHUNK_MASK: u32 = {
assert!(Self::CHUNK_SIZE.is_power_of_two());
assert!(Self::CHUNK_SIZE as usize as u32 == Self::CHUNK_SIZE);
Self::CHUNK_SIZE - 1
};
fn from_non_zero_u32(i: NonZeroU32) -> Self;
fn to_non_zero_u32(self) -> NonZeroU32;
fn cx_entity_alloc(cx: &super::Context) -> &EntityAlloc<Self>;
#[inline(always)]
fn to_chunk_start_and_intra_chunk_idx(self) -> (Self, usize) {
let self_u32 = self.to_non_zero_u32().get();
(
Self::from_non_zero_u32(NonZeroU32::new(self_u32 & !Self::CHUNK_MASK).unwrap()),
(self_u32 & Self::CHUNK_MASK) as usize,
)
}
}
pub struct EntityAlloc<E: Entity>(Cell<E>);
impl<E: Entity> Default for EntityAlloc<E> {
fn default() -> Self {
// NOTE(eddyb) always skip chunk `0`, as a sort of "null page",
// to allow using `NonZeroU32` instead of merely `u32`.
Self(Cell::new(E::from_non_zero_u32(NonZeroU32::new(E::CHUNK_SIZE).unwrap())))
}
}
impl<E: Entity> EntityAlloc<E> {
#[track_caller]
pub(super) fn alloc_chunk(&self) -> E {
let chunk_start = self.0.get();
let next_chunk_start = E::from_non_zero_u32(
// FIXME(eddyb) use `NonZeroU32::checked_add`
// when that gets stabilized.
NonZeroU32::new(
chunk_start
.to_non_zero_u32()
.get()
.checked_add(E::CHUNK_SIZE)
.expect("entity index overflowed u32"),
)
.unwrap(),
);
self.0.set(next_chunk_start);
chunk_start
}
}
}
use sealed::Entity as _;
/// Dispatch helper, to allow implementing interning logic on
/// the type passed to `cx.intern(...)`.
pub trait InternInCx<I> {
#[track_caller]
fn intern_in_cx(self, cx: &Context) -> I;
}
impl Context {
pub fn new() -> Self {
Self::default()
}
#[track_caller]
pub fn intern<T: InternInCx<I>, I>(&self, x: T) -> I {
x.intern_in_cx(self)
}
}
impl<I: sealed::Interned> std::ops::Index<I> for Context {
type Output = I::Def;
fn index(&self, interned: I) -> &Self::Output {
&I::cx_interner(self)[interned]
}
}
// FIXME(eddyb) consider including `Rc<Context>` in `EntityDefs` to avoid having
// to pass it manually to the `EntityDefs::define` methods (which feels dangerous!).
//
/// Collection holding the actual definitions for [`Context`]-allocated entities.
///
/// By design there is no way to iterate the contents of an [`EntityDefs`], or
/// generate entity indices without defining the entity in an [`EntityDefs`].
#[derive(Clone)]
pub struct EntityDefs<E: sealed::Entity> {
/// Entities are grouped into chunks, with per-entity-type chunk sizes
/// (powers of 2) specified via `entities!` below.
/// This allows different [`EntityDefs`]s to independently define more
/// entities, without losing compactness (until a whole chunk is filled).
//
// FIXME(eddyb) consider using `u32` instead of `usize` for the "flattened base".
complete_chunk_start_to_flattened_base: FxHashMap<E, usize>,
/// Similar to a single entry in `complete_chunk_start_to_flattened_base`,
/// but kept outside of the map for efficiency. Also, this is the only
/// chunk that doesn't have its full size already (and therefore allows
/// defining more entities into it, without allocating new chunks).
incomplete_chunk_start_and_flattened_base: Option<(E, usize)>,
/// All chunks' definitions are flattened into one contiguous [`Vec`], where
/// the start of each chunk's definitions in `flattened` is indicated by
/// either `complete_chunk_start_to_flattened_base` (for completed chunks)
/// or `incomplete_chunk_start_and_flattened_base`.
flattened: Vec<E::Def>,
}
impl<E: sealed::Entity> Default for EntityDefs<E> {
fn default() -> Self {
Self {
complete_chunk_start_to_flattened_base: FxHashMap::default(),
incomplete_chunk_start_and_flattened_base: None,
flattened: vec![],
}
}
}
impl<E: sealed::Entity> EntityDefs<E> {
pub fn new() -> Self {
Self::default()
}
#[track_caller]
pub fn define(&mut self, cx: &Context, def: E::Def) -> E {
let entity = match self.incomplete_chunk_start_and_flattened_base {
Some((chunk_start, flattened_base)) => {
let chunk_len = self.flattened.len() - flattened_base;
// This is the last entity in this chunk, completing it.
// NB: no new chunk is allocated here, but instead the next
// `define` call will find no incomplete chunk, which will
// prompt it to allocate a new chunk itself.
if chunk_len == (E::CHUNK_SIZE - 1) as usize {
self.complete_chunk_start_to_flattened_base
.extend(self.incomplete_chunk_start_and_flattened_base.take());
}
E::from_non_zero_u32(
NonZeroU32::new(chunk_start.to_non_zero_u32().get() + chunk_len as u32)
.unwrap(),
)
}
None => {
let chunk_start = E::cx_entity_alloc(cx).alloc_chunk();
self.incomplete_chunk_start_and_flattened_base =
Some((chunk_start, self.flattened.len()));
chunk_start
}
};
self.flattened.push(def);
entity
}
fn entity_to_flattened(&self, entity: E) -> Option<usize> {
let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
let flattened_base = match self.incomplete_chunk_start_and_flattened_base {
Some((incomplete_chunk_start, incomplete_flattened_base))
if chunk_start == incomplete_chunk_start =>
{
incomplete_flattened_base
}
_ => *self.complete_chunk_start_to_flattened_base.get(&chunk_start)?,
};
Some(flattened_base + intra_chunk_idx)
}
}
impl<E: sealed::Entity> std::ops::Index<E> for EntityDefs<E> {
type Output = E::Def;
fn index(&self, entity: E) -> &Self::Output {
self.entity_to_flattened(entity).and_then(|i| self.flattened.get(i)).unwrap()
}
}
impl<E: sealed::Entity> std::ops::IndexMut<E> for EntityDefs<E> {
fn index_mut(&mut self, entity: E) -> &mut Self::Output {
self.entity_to_flattened(entity).and_then(|i| self.flattened.get_mut(i)).unwrap()
}
}
/// `EntityOriented*Map<Self, V>` support trait, implemented for entity types,
/// but which can also be implemented by users for their own newtypes and other
/// types wrapping entity types (such as finite `enum`s).
pub trait EntityOrientedMapKey<V>: Copy {
/// The entity type that appears exactly once in every value of `Self`.
type Entity: sealed::Entity;
fn to_entity(key: Self) -> Self::Entity;
/// A type holding enough different `Option<V>` slots, for all possible
/// values of `Self`, for a given `Self::Entity` value contained inside.
//
// FIXME(eddyb) consider making this just an array length?
type DenseValueSlots: Default;
fn get_dense_value_slot(key: Self, slots: &Self::DenseValueSlots) -> &Option<V>;
fn get_dense_value_slot_mut(key: Self, slots: &mut Self::DenseValueSlots) -> &mut Option<V>;
}
impl<E: sealed::Entity, V> EntityOrientedMapKey<V> for E {
type Entity = E;
fn to_entity(key: E) -> E {
key
}
type DenseValueSlots = Option<V>;
fn get_dense_value_slot(_: Self, slot: &Option<V>) -> &Option<V> {
slot
}
fn get_dense_value_slot_mut(_: Self, slot: &mut Option<V>) -> &mut Option<V> {
slot
}
}
/// Map with `K` keys and `V` values, that is:
/// * "entity-oriented" `K` keys, i.e. that are or contain exactly one entity
/// (supported via [`K: EntityOrientedMapKey<V>`](EntityOrientedMapKey) for extensibility)
/// * "dense" in the sense of few (or no) gaps in (the entities in) its keys
/// (relative to the entities defined in the corresponding [`EntityDefs`])
///
/// By design there is no way to iterate the entries in an [`EntityOrientedDenseMap`].
//
// FIXME(eddyb) implement a "sparse" version as well, and maybe some bitsets?
#[derive(Clone)]
pub struct EntityOrientedDenseMap<K: EntityOrientedMapKey<V>, V> {
/// Like in [`EntityDefs`], entities are grouped into chunks, but there is no
/// flattening, since arbitrary insertion orders have to be supported.
chunk_start_to_value_slots: SmallFxHashMap<K::Entity, Vec<K::DenseValueSlots>>,
}
// FIXME(eddyb) find a better "small map" design and/or fine-tune this - though,
// since the ideal state is one chunk per map, the slow case might never be hit,
// unless one `EntityOrientedDenseMap` is used with more than one `EntityDefs`,
// which could still maybe be implemented more efficiently than `FxHashMap`.
#[derive(Clone)]
enum SmallFxHashMap<K, V> {
Empty,
One(K, V),
More(FxHashMap<K, V>),
}
impl<K, V> Default for SmallFxHashMap<K, V> {
fn default() -> Self {
Self::Empty
}
}
impl<K: Copy + Eq + Hash, V: Default> SmallFxHashMap<K, V> {
fn get_mut_or_insert_default(&mut self, k: K) -> &mut V {
// HACK(eddyb) to avoid borrowing issues, this is done in two stages:
// 1. ensure `self` is `One(k, _) | More`, i.e. `One` implies same key
match *self {
Self::Empty => {
*self = Self::One(k, V::default());
}
Self::One(old_k, _) => {
if old_k != k {
let old = mem::replace(self, Self::More(Default::default()));
match (old, &mut *self) {
(Self::One(_, old_v), Self::More(map)) => {
map.insert(old_k, old_v);
}
_ => unreachable!(),
}
}
}
Self::More(_) => {}
}
// 2. get the value from `One` or potentially insert one into `More`
match self {
Self::Empty => unreachable!(),
Self::One(_, v) => v,
Self::More(map) => map.entry(k).or_default(),
}
}
fn get(&self, k: K) -> Option<&V> {
#[allow(clippy::match_same_arms)]
match self {
Self::Empty => None,
Self::One(old_k, old_v) if *old_k == k => Some(old_v),
Self::One(..) => None,
Self::More(map) => map.get(&k),
}
}
fn get_mut(&mut self, k: K) -> Option<&mut V> {
#[allow(clippy::match_same_arms)]
match self {
Self::Empty => None,
Self::One(old_k, old_v) if *old_k == k => Some(old_v),
Self::One(..) => None,
Self::More(map) => map.get_mut(&k),
}
}
}
impl<K: EntityOrientedMapKey<V>, V> Default for EntityOrientedDenseMap<K, V> {
fn default() -> Self {
Self { chunk_start_to_value_slots: Default::default() }
}
}
impl<K: EntityOrientedMapKey<V>, V> EntityOrientedDenseMap<K, V> {
pub fn new() -> Self {
Self::default()
}
// FIXME(eddyb) this should not allocate space unconditionally, but offer an
// API where "vacant entry" may or may not have a `&mut Option<V>` in it.
pub fn entry(&mut self, key: K) -> &mut Option<V> {
let entity = K::to_entity(key);
let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
let chunk_value_slots =
self.chunk_start_to_value_slots.get_mut_or_insert_default(chunk_start);
// Ensure there are enough slots for the new entry.
let needed_len = intra_chunk_idx + 1;
if chunk_value_slots.len() < needed_len {
chunk_value_slots.resize_with(needed_len, Default::default);
}
let value_slots = &mut chunk_value_slots[intra_chunk_idx];
K::get_dense_value_slot_mut(key, value_slots)
}
pub fn insert(&mut self, key: K, value: V) -> Option<V> {
self.entry(key).replace(value)
}
pub fn get(&self, key: K) -> Option<&V> {
let entity = K::to_entity(key);
let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
let value_slots = self.chunk_start_to_value_slots.get(chunk_start)?.get(intra_chunk_idx)?;
K::get_dense_value_slot(key, value_slots).as_ref()
}
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
self.get_slot_mut(key)?.as_mut()
}
pub fn remove(&mut self, key: K) -> Option<V> {
self.get_slot_mut(key)?.take()
}
// FIXME(eddyb) deduplicate with `entry`.
fn get_slot_mut(&mut self, key: K) -> Option<&mut Option<V>> {
let entity = K::to_entity(key);
let (chunk_start, intra_chunk_idx) = entity.to_chunk_start_and_intra_chunk_idx();
let value_slots =
self.chunk_start_to_value_slots.get_mut(chunk_start)?.get_mut(intra_chunk_idx)?;
Some(K::get_dense_value_slot_mut(key, value_slots))
}
}
impl<K: EntityOrientedMapKey<V>, V> std::ops::Index<K> for EntityOrientedDenseMap<K, V> {
type Output = V;
fn index(&self, key: K) -> &V {
self.get(key).expect("no entry found for key")
}
}
impl<K: EntityOrientedMapKey<V>, V> std::ops::IndexMut<K> for EntityOrientedDenseMap<K, V> {
fn index_mut(&mut self, key: K) -> &mut V {
self.get_mut(key).expect("no entry found for key")
}
}
#[allow(rustdoc::private_intra_doc_links)]
/// Doubly-linked list, "intrusively" going through `E::Def`, which must be an
/// [`EntityListNode<E, _>`] (to hold the "previous/next node" links).
///
/// Fields are private to avoid arbitrary user interactions.
#[derive(Copy, Clone)]
pub struct EntityList<E: sealed::Entity>(Option<FirstLast<E, E>>);
// HACK(eddyb) this only exists to give field names to the non-empty case.
#[derive(Copy, Clone)]
struct FirstLast<F, L> {
first: F,
last: L,
}
impl<E: sealed::Entity> Default for EntityList<E> {
fn default() -> Self {
Self(None)
}
}
impl<E: sealed::Entity<Def = EntityListNode<E, D>>, D> EntityList<E> {
pub fn empty() -> Self {
Self::default()
}
pub fn is_empty(self) -> bool {
self.0.is_none()
}
pub fn iter(self) -> EntityListIter<E> {
EntityListIter { first: self.0.map(|list| list.first), last: self.0.map(|list| list.last) }
}
/// Insert `new_node` (defined in `defs`) at the start of `self`.
#[track_caller]
pub fn insert_first(&mut self, new_node: E, defs: &mut EntityDefs<E>) {
let new_node_def = &mut defs[new_node];
assert!(
new_node_def.prev.is_none() && new_node_def.next.is_none(),
"EntityList::insert_first: new node already linked into a (different?) list"
);
new_node_def.next = self.0.map(|this| this.first);
if let Some(old_first) = new_node_def.next {
let old_first_def = &mut defs[old_first];
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable,
// but it's still possible to keep around outdated `EntityList`s
// (should `EntityList` not implement `Copy`/`Clone` *at all*?)
assert!(old_first_def.prev.is_none(), "invalid EntityList: `first->prev != None`");
old_first_def.prev = Some(new_node);
}
self.0 =
Some(FirstLast { first: new_node, last: self.0.map_or(new_node, |this| this.last) });
}
/// Insert `new_node` (defined in `defs`) at the end of `self`.
#[track_caller]
pub fn insert_last(&mut self, new_node: E, defs: &mut EntityDefs<E>) {
let new_node_def = &mut defs[new_node];
assert!(
new_node_def.prev.is_none() && new_node_def.next.is_none(),
"EntityList::insert_last: new node already linked into a (different?) list"
);
new_node_def.prev = self.0.map(|this| this.last);
if let Some(old_last) = new_node_def.prev {
let old_last_def = &mut defs[old_last];
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable,
// but it's still possible to keep around outdated `EntityList`s
// (should `EntityList` not implement `Copy`/`Clone` *at all*?)
assert!(old_last_def.next.is_none(), "invalid EntityList: `last->next != None`");
old_last_def.next = Some(new_node);
}
self.0 =
Some(FirstLast { first: self.0.map_or(new_node, |this| this.first), last: new_node });
}
/// Insert `new_node` (defined in `defs`) into `self`, before `next`.
//
// FIXME(eddyb) unify this with the other insert methods, maybe with a new
// "insert position" type?
#[track_caller]
pub fn insert_before(&mut self, new_node: E, next: E, defs: &mut EntityDefs<E>) {
let prev = defs[next].prev.replace(new_node);
let new_node_def = &mut defs[new_node];
assert!(
new_node_def.prev.is_none() && new_node_def.next.is_none(),
"EntityList::insert_before: new node already linked into a (different?) list"
);
new_node_def.prev = prev;
new_node_def.next = Some(next);
match prev {
Some(prev) => {
let old_prev_next = defs[prev].next.replace(new_node);
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable.
assert!(
old_prev_next == Some(next),
"invalid EntityListNode: `node->prev->next != node`"
);
}
None => {
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable,
// but it's still possible to keep around outdated `EntityList`s
// (should `EntityList` not implement `Copy`/`Clone` *at all*?)
assert!(
self.0.map(|this| this.first) == Some(next),
"invalid EntityList: `node->prev == None` but `node != first`"
);
self.0.as_mut().unwrap().first = new_node;
}
}
}
/// Insert all of `list_to_prepend`'s nodes at the start of `self`.
#[track_caller]
pub fn prepend(&mut self, list_to_prepend: Self, defs: &mut EntityDefs<E>) {
*self = Self::concat(list_to_prepend, *self, defs);
}
/// Insert all of `list_to_append`'s nodes at the end of `self`.
#[track_caller]
pub fn append(&mut self, list_to_append: Self, defs: &mut EntityDefs<E>) {
*self = Self::concat(*self, list_to_append, defs);
}
/// Private helper for `prepend`/`append`.
#[track_caller]
fn concat(a: Self, b: Self, defs: &mut EntityDefs<E>) -> Self {
let (a, b) = match (a.0, b.0) {
(Some(a), Some(b)) => (a, b),
(a, b) => return Self(a.or(b)),
};
{
let a_last_def = &mut defs[a.last];
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable,
// but it's still possible to keep around outdated `EntityList`s
// (should `EntityList` not implement `Copy`/`Clone` *at all*?)
assert!(a_last_def.next.is_none(), "invalid EntityList: `last->next != None`");
a_last_def.next = Some(b.first);
}
{
let b_first_def = &mut defs[b.first];
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable,
// but it's still possible to keep around outdated `EntityList`s
// (should `EntityList` not implement `Copy`/`Clone` *at all*?)
assert!(b_first_def.prev.is_none(), "invalid EntityList: `first->prev != None`");
b_first_def.prev = Some(a.last);
}
Self(Some(FirstLast { first: a.first, last: b.last }))
}
/// Remove `node` (defined in `defs`) from `self`.
#[track_caller]
pub fn remove(&mut self, node: E, defs: &mut EntityDefs<E>) {
// Unlink `node->{prev,next}` first (also allowing re-insertion elsewhere).
let (prev, next) = {
let node_def = &mut defs[node];
(node_def.prev.take(), node_def.next.take())
};
// Unlink `prev->next = node` (or validate `first = node`).
match prev {
Some(prev) => {
let old_prev_next = mem::replace(&mut defs[prev].next, next);
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable.
assert!(
old_prev_next == Some(node),
"invalid EntityListNode: `node->prev->next != node`"
);
}
None => {
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable,
// but it's still possible to keep around outdated `EntityList`s
// (should `EntityList` not implement `Copy`/`Clone` *at all*?)
assert!(
self.0.map(|this| this.first) == Some(node),
"invalid EntityList: `node->prev == None` but `node != first`"
);
}
}
// Unlink `next->prev = node` (or validate `last = node`).
match next {
Some(next) => {
let old_next_prev = mem::replace(&mut defs[next].prev, prev);
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable.
assert!(
old_next_prev == Some(node),
"invalid EntityListNode: `node->next->prev != node`"
);
}
None => {
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable,
// but it's still possible to keep around outdated `EntityList`s
// (should `EntityList` not implement `Copy`/`Clone` *at all*?)
assert!(
self.0.map(|this| this.last) == Some(node),
"invalid EntityList: `node->next == None` but `node != last`"
);
}
}
// Update list end-points (overwritten `first`/`last` validated above).
match (prev, next) {
(Some(_), Some(_)) => {}
(None, Some(next)) => self.0.as_mut().unwrap().first = next,
(Some(prev), None) => self.0.as_mut().unwrap().last = prev,
(None, None) => self.0 = None,
}
}
}
/// [`EntityList<E>`] iterator, but with a different API than [`Iterator`].
///
/// This can also be considered a (non-random-access) "subslice" of the list.
#[derive(Copy, Clone)]
pub struct EntityListIter<E: sealed::Entity> {
pub first: Option<E>,
pub last: Option<E>,
}
impl<E: sealed::Entity<Def = EntityListNode<E, D>>, D> EntityListIter<E> {
#[track_caller]
pub fn split_first(self, defs: &EntityDefs<E>) -> Option<(E, Self)> {
let Self { first, last } = self;
let current = first?;
let next = defs[current].next;
match next {
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable.
Some(next) => assert!(
defs[next].prev == Some(current),
"invalid EntityListNode: `node->next->prev != node`"
),
None => assert!(
Some(current) == last,
"invalid EntityListIter: `first->next->...->next != last`"
),
}
Some((current, Self { first: next, last }))
}
#[track_caller]
pub fn split_last(self, defs: &EntityDefs<E>) -> Option<(E, Self)> {
let Self { first, last } = self;
let current = last?;
let prev = defs[current].prev;
match prev {
// FIXME(eddyb) this situation should be impossible anyway, as it
// involves the `EntityListNode`s links, which should be unforgeable.
Some(prev) => assert!(
defs[prev].next == Some(current),
"invalid EntityListNode: `node->prev->next != node`"
),
None => assert!(
Some(current) == first,
"invalid EntityListIter: `last->prev->...->prev != first`"
),
}
Some((current, Self { first, last: prev }))
}
}
/// [`EntityList<E>`] node, containing the "intrusive" list links, and the rest of
/// the entity definition (the `inner_def` field of type `D`).
///
/// Fields are private to avoid arbitrary user interactions outside of special
/// methods and [`Deref`]/[`DerefMut`].
//
// FIXME(eddyb) `Deref`/`DerefMut` aren't the best API, could this be hidden
// further by making `EntityDefs` hide the list links in the `Index` impl?
#[derive(Clone)]
pub struct EntityListNode<E: sealed::Entity<Def = Self>, D> {
prev: Option<E>,
next: Option<E>,
inner_def: D,
}
impl<E: sealed::Entity<Def = Self>, D> From<D> for EntityListNode<E, D> {
fn from(inner_def: D) -> Self {
Self { prev: None, next: None, inner_def }
}
}
impl<E: sealed::Entity<Def = Self>, D> EntityListNode<E, D> {
pub fn prev_in_list(&self) -> Option<E> {
self.prev
}
pub fn next_in_list(&self) -> Option<E> {
self.next
}
}
impl<E: sealed::Entity<Def = Self>, D> Deref for EntityListNode<E, D> {
type Target = D;
fn deref(&self) -> &D {
&self.inner_def
}
}
impl<E: sealed::Entity<Def = Self>, D> DerefMut for EntityListNode<E, D> {
fn deref_mut(&mut self) -> &mut D {
&mut self.inner_def
}
}
macro_rules! interners {
(
needs_as_ref { $($needs_as_ref_ty:ty),* $(,)? }
$($name:ident $(default($default:expr))? => $ty:ty),+ $(,)?
) => {
$(impl AsRef<Self> for $needs_as_ref_ty {
fn as_ref(&self) -> &Self {
self
}
})*
#[allow(non_snake_case)]
#[derive(Default)]
struct Interners {
$($name: sealed::Interner<$name>),*
}
$(
// NOTE(eddyb) never derive `PartialOrd, Ord` for these types, as
// observing the interning order shouldn't be allowed.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct $name(
// FIXME(eddyb) figure out how to sneak niches into these types, to
// allow e.g. `Option` around them to not increase the size.
#[doc(hidden)] u32,
);
$(impl Default for $name {
fn default() -> Self {
// HACK(eddyb) have to mention `$default` in this `$(...)?`
// to gate its presence on `$default`'s presence.
if false { let _ = $default; }
Self(0)
}
})?
impl sealed::Interned for $name {
type Def = $ty;
$(fn preintern(interner: &sealed::Interner<Self>) {
interner.intern($default);
})?
#[inline(always)]
fn from_u32(i: u32) -> Self {
Self(i)
}
#[inline(always)]
fn to_u32(self) -> u32 {
self.0
}
#[inline(always)]
fn cx_interner(cx: &Context) -> &sealed::Interner<Self> {
&cx.interners.$name
}
}
)*
};
}
interners! {
needs_as_ref {
crate::AttrSetDef,
crate::TypeDef,
crate::ConstDef,
crate::DataInstFormDef,
}
// FIXME(eddyb) consider a more uniform naming scheme than the combination
// of `InternedFoo => Foo` and `Foo => FooDef`.
InternedStr => str,
AttrSet default(crate::AttrSetDef::default()) => crate::AttrSetDef,
Type => crate::TypeDef,
Const => crate::ConstDef,
DataInstForm => crate::DataInstFormDef,
}
impl<I: sealed::Interned> InternInCx<I> for I::Def
where
I::Def: Sized + AsRef<I::Def>,
{
fn intern_in_cx(self, cx: &Context) -> I {
I::cx_interner(cx).intern(self)
}
}
impl InternInCx<InternedStr> for &'_ str {
fn intern_in_cx(self, cx: &Context) -> InternedStr {
cx.interners.InternedStr.intern(self)
}
}
impl InternInCx<InternedStr> for String {
fn intern_in_cx(self, cx: &Context) -> InternedStr {
cx.interners.InternedStr.intern(self)
}
}
macro_rules! entities {
(
$($name:ident => chunk_size($chunk_size:literal) $def:ty),+ $(,)?
) => {
#[allow(non_snake_case)]
#[derive(Default)]
struct EntityAllocs {
$($name: sealed::EntityAlloc<$name>),*
}
$(
// NOTE(eddyb) never derive `PartialOrd, Ord` for these types, as
// observing the entity index allocation order shouldn't be allowed.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct $name(#[doc(hidden)] NonZeroU32);
impl sealed::Entity for $name {
type Def = $def;
const CHUNK_SIZE: u32 = $chunk_size;
#[inline(always)]
fn from_non_zero_u32(i: NonZeroU32) -> Self {
Self(i)
}
#[inline(always)]
fn to_non_zero_u32(self) -> NonZeroU32 {
self.0
}
#[inline(always)]
fn cx_entity_alloc(cx: &Context) -> &sealed::EntityAlloc<Self> {
&cx.entity_allocs.$name
}
}
)*
};
}
entities! {
GlobalVar => chunk_size(0x1_0000) crate::GlobalVarDecl,
Func => chunk_size(0x1_0000) crate::FuncDecl,
ControlRegion => chunk_size(0x1000) crate::ControlRegionDef,
ControlNode => chunk_size(0x1000) EntityListNode<ControlNode, crate::ControlNodeDef>,
DataInst => chunk_size(0x1000) EntityListNode<DataInst, crate::DataInstDef>,
}