```
#[repr(C)]pub struct DAffine2 {
pub matrix2: DMat2,
pub translation: DVec2,
}
```

## Expand description

A 2D affine transform, which can represent translation, rotation, scaling and shear.

## Fields§

§`matrix2: DMat2`

§`translation: DVec2`

## Implementations§

source§### impl DAffine2

### impl DAffine2

source#### pub const ZERO: Self = _

#### pub const ZERO: Self = _

The degenerate zero transform.

This transforms any finite vector and point to zero. The zero transform is non-invertible.

source#### pub const IDENTITY: Self = _

#### pub const IDENTITY: Self = _

The identity transform.

Multiplying a vector with this returns the same vector.

source#### pub const fn from_cols(x_axis: DVec2, y_axis: DVec2, z_axis: DVec2) -> Self

#### pub const fn from_cols(x_axis: DVec2, y_axis: DVec2, z_axis: DVec2) -> Self

Creates an affine transform from three column vectors.

source#### pub fn from_cols_array(m: &[f64; 6]) -> Self

#### pub fn from_cols_array(m: &[f64; 6]) -> Self

Creates an affine transform from a `[f64; 6]`

array stored in column major order.

source#### pub fn to_cols_array(&self) -> [f64; 6]

#### pub fn to_cols_array(&self) -> [f64; 6]

Creates a `[f64; 6]`

array storing data in column major order.

source#### pub fn from_cols_array_2d(m: &[[f64; 2]; 3]) -> Self

#### pub fn from_cols_array_2d(m: &[[f64; 2]; 3]) -> Self

Creates an affine transform from a `[[f64; 2]; 3]`

2D array stored in column major order.
If your data is in row major order you will need to `transpose`

the returned
matrix.

source#### pub fn to_cols_array_2d(&self) -> [[f64; 2]; 3]

#### pub fn to_cols_array_2d(&self) -> [[f64; 2]; 3]

Creates a `[[f64; 2]; 3]`

2D array storing data in
column major order.
If you require data in row major order `transpose`

the matrix first.

source#### pub fn from_cols_slice(slice: &[f64]) -> Self

#### pub fn from_cols_slice(slice: &[f64]) -> Self

Creates an affine transform from the first 6 values in `slice`

.

##### Panics

Panics if `slice`

is less than 6 elements long.

source#### pub fn write_cols_to_slice(self, slice: &mut [f64])

#### pub fn write_cols_to_slice(self, slice: &mut [f64])

Writes the columns of `self`

to the first 6 elements in `slice`

.

##### Panics

Panics if `slice`

is less than 6 elements long.

source#### pub fn from_scale(scale: DVec2) -> Self

#### pub fn from_scale(scale: DVec2) -> Self

Creates an affine transform that changes scale. Note that if any scale is zero the transform will be non-invertible.

source#### pub fn from_angle(angle: f64) -> Self

#### pub fn from_angle(angle: f64) -> Self

Creates an affine transform from the given rotation `angle`

.

source#### pub fn from_translation(translation: DVec2) -> Self

#### pub fn from_translation(translation: DVec2) -> Self

Creates an affine transformation from the given 2D `translation`

.

source#### pub fn from_mat2(matrix2: DMat2) -> Self

#### pub fn from_mat2(matrix2: DMat2) -> Self

Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation)

source#### pub fn from_mat2_translation(matrix2: DMat2, translation: DVec2) -> Self

#### pub fn from_mat2_translation(matrix2: DMat2, translation: DVec2) -> Self

Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) and a translation vector.

Equivalent to
`DAffine2::from_translation(translation) * DAffine2::from_mat2(mat2)`

source#### pub fn from_scale_angle_translation(
scale: DVec2,
angle: f64,
translation: DVec2
) -> Self

#### pub fn from_scale_angle_translation( scale: DVec2, angle: f64, translation: DVec2 ) -> Self

Creates an affine transform from the given 2D `scale`

, rotation `angle`

(in radians) and
`translation`

.

Equivalent to `DAffine2::from_translation(translation) * DAffine2::from_angle(angle) * DAffine2::from_scale(scale)`

source#### pub fn from_angle_translation(angle: f64, translation: DVec2) -> Self

#### pub fn from_angle_translation(angle: f64, translation: DVec2) -> Self

Creates an affine transform from the given 2D rotation `angle`

(in radians) and
`translation`

.

Equivalent to `DAffine2::from_translation(translation) * DAffine2::from_angle(angle)`

source#### pub fn to_scale_angle_translation(self) -> (DVec2, f64, DVec2)

#### pub fn to_scale_angle_translation(self) -> (DVec2, f64, DVec2)

Extracts `scale`

, `angle`

and `translation`

from `self`

.

The transform is expected to be non-degenerate and without shearing, or the output will be invalid.

##### Panics

Will panic if the determinant `self.matrix2`

is zero or if the resulting scale
vector contains any zero elements when `glam_assert`

is enabled.

source#### pub fn transform_point2(&self, rhs: DVec2) -> DVec2

#### pub fn transform_point2(&self, rhs: DVec2) -> DVec2

Transforms the given 2D point, applying shear, scale, rotation and translation.

source#### pub fn transform_vector2(&self, rhs: DVec2) -> DVec2

#### pub fn transform_vector2(&self, rhs: DVec2) -> DVec2

Transforms the given 2D vector, applying shear, scale and rotation (but NOT translation).

To also apply translation, use `Self::transform_point2()`

instead.

source#### pub fn is_finite(&self) -> bool

#### pub fn is_finite(&self) -> bool

Returns `true`

if, and only if, all elements are finite.

If any element is either `NaN`

, positive or negative infinity, this will return
`false`

.

source#### pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool

#### pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool

Returns true if the absolute difference of all elements between `self`

and `rhs`

is less than or equal to `max_abs_diff`

.

This can be used to compare if two 3x4 matrices contain similar elements. It works
best when comparing with a known value. The `max_abs_diff`

that should be used used
depends on the values being compared against.

For more see comparing floating point numbers.

## Trait Implementations§

source§### impl MulAssign<DAffine2> for DAffine2

### impl MulAssign<DAffine2> for DAffine2

source§#### fn mul_assign(&mut self, rhs: DAffine2)

#### fn mul_assign(&mut self, rhs: DAffine2)

`*=`

operation. Read more