#[repr(C)]pub struct DMat4 {
pub x_axis: DVec4,
pub y_axis: DVec4,
pub z_axis: DVec4,
pub w_axis: DVec4,
}
Expand description
A 4x4 column major matrix.
This 4x4 matrix type features convenience methods for creating and using affine transforms and
perspective projections. If you are primarily dealing with 3D affine transformations
considering using DAffine3
which is faster than a 4x4 matrix
for some affine operations.
Affine transformations including 3D translation, rotation and scale can be created
using methods such as Self::from_translation()
, Self::from_quat()
,
Self::from_scale()
and Self::from_scale_rotation_translation()
.
Orthographic projections can be created using the methods Self::orthographic_lh()
for
left-handed coordinate systems and Self::orthographic_rh()
for right-handed
systems. The resulting matrix is also an affine transformation.
The Self::transform_point3()
and Self::transform_vector3()
convenience methods
are provided for performing affine transformations on 3D vectors and points. These
multiply 3D inputs as 4D vectors with an implicit w
value of 1
for points and 0
for vectors respectively. These methods assume that Self
contains a valid affine
transform.
Perspective projections can be created using methods such as
Self::perspective_lh()
, Self::perspective_infinite_lh()
and
Self::perspective_infinite_reverse_lh()
for left-handed co-ordinate systems and
Self::perspective_rh()
, Self::perspective_infinite_rh()
and
Self::perspective_infinite_reverse_rh()
for right-handed co-ordinate systems.
The resulting perspective project can be use to transform 3D vectors as points with
perspective correction using the Self::project_point3()
convenience method.
Fields§
§x_axis: DVec4
§y_axis: DVec4
§z_axis: DVec4
§w_axis: DVec4
Implementations§
source§impl DMat4
impl DMat4
sourcepub const IDENTITY: Self = _
pub const IDENTITY: Self = _
A 4x4 identity matrix, where all diagonal elements are 1
, and all off-diagonal elements are 0
.
sourcepub const fn from_cols(
x_axis: DVec4,
y_axis: DVec4,
z_axis: DVec4,
w_axis: DVec4
) -> Self
pub const fn from_cols( x_axis: DVec4, y_axis: DVec4, z_axis: DVec4, w_axis: DVec4 ) -> Self
Creates a 4x4 matrix from four column vectors.
sourcepub const fn from_cols_array(m: &[f64; 16]) -> Self
pub const fn from_cols_array(m: &[f64; 16]) -> Self
Creates a 4x4 matrix from a [f64; 16]
array stored in column major order.
If your data is stored in row major you will need to transpose
the returned
matrix.
sourcepub const fn to_cols_array(&self) -> [f64; 16]
pub const fn to_cols_array(&self) -> [f64; 16]
Creates a [f64; 16]
array storing data in column major order.
If you require data in row major order transpose
the matrix first.
sourcepub const fn from_cols_array_2d(m: &[[f64; 4]; 4]) -> Self
pub const fn from_cols_array_2d(m: &[[f64; 4]; 4]) -> Self
Creates a 4x4 matrix from a [[f64; 4]; 4]
4D array stored in column major order.
If your data is in row major order you will need to transpose
the returned
matrix.
sourcepub const fn to_cols_array_2d(&self) -> [[f64; 4]; 4]
pub const fn to_cols_array_2d(&self) -> [[f64; 4]; 4]
Creates a [[f64; 4]; 4]
4D array storing data in column major order.
If you require data in row major order transpose
the matrix first.
sourcepub const fn from_diagonal(diagonal: DVec4) -> Self
pub const fn from_diagonal(diagonal: DVec4) -> Self
Creates a 4x4 matrix with its diagonal set to diagonal
and all other entries set to 0.
sourcepub fn from_scale_rotation_translation(
scale: DVec3,
rotation: DQuat,
translation: DVec3
) -> Self
pub fn from_scale_rotation_translation( scale: DVec3, rotation: DQuat, translation: DVec3 ) -> Self
Creates an affine transformation matrix from the given 3D scale
, rotation
and
translation
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
Panics
Will panic if rotation
is not normalized when glam_assert
is enabled.
sourcepub fn from_rotation_translation(rotation: DQuat, translation: DVec3) -> Self
pub fn from_rotation_translation(rotation: DQuat, translation: DVec3) -> Self
Creates an affine transformation matrix from the given 3D translation
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
Panics
Will panic if rotation
is not normalized when glam_assert
is enabled.
sourcepub fn to_scale_rotation_translation(&self) -> (DVec3, DQuat, DVec3)
pub fn to_scale_rotation_translation(&self) -> (DVec3, DQuat, DVec3)
Extracts scale
, rotation
and translation
from self
. The input matrix is
expected to be a 3D affine transformation matrix otherwise the output will be invalid.
Panics
Will panic if the determinant of self
is zero or if the resulting scale vector
contains any zero elements when glam_assert
is enabled.
sourcepub fn from_quat(rotation: DQuat) -> Self
pub fn from_quat(rotation: DQuat) -> Self
Creates an affine transformation matrix from the given rotation
quaternion.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
Panics
Will panic if rotation
is not normalized when glam_assert
is enabled.
sourcepub fn from_mat3(m: DMat3) -> Self
pub fn from_mat3(m: DMat3) -> Self
Creates an affine transformation matrix from the given 3x3 linear transformation matrix.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_translation(translation: DVec3) -> Self
pub fn from_translation(translation: DVec3) -> Self
Creates an affine transformation matrix from the given 3D translation
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_axis_angle(axis: DVec3, angle: f64) -> Self
pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self
Creates an affine transformation matrix containing a 3D rotation around a normalized
rotation axis
of angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
Panics
Will panic if axis
is not normalized when glam_assert
is enabled.
sourcepub fn from_euler(order: EulerRot, a: f64, b: f64, c: f64) -> Self
pub fn from_euler(order: EulerRot, a: f64, b: f64, c: f64) -> Self
Creates a affine transformation matrix containing a rotation from the given euler rotation sequence and angles (in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn to_euler(&self, order: EulerRot) -> (f64, f64, f64)
pub fn to_euler(&self, order: EulerRot) -> (f64, f64, f64)
Extract Euler angles with the given Euler rotation order.
Note if the upper 3x3 matrix contain scales, shears, or other non-rotation transformations then the resulting Euler angles will be ill-defined.
Panics
Will panic if any column of the upper 3x3 rotation matrix is not normalized when
glam_assert
is enabled.
sourcepub fn from_rotation_x(angle: f64) -> Self
pub fn from_rotation_x(angle: f64) -> Self
Creates an affine transformation matrix containing a 3D rotation around the x axis of
angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_rotation_y(angle: f64) -> Self
pub fn from_rotation_y(angle: f64) -> Self
Creates an affine transformation matrix containing a 3D rotation around the y axis of
angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_rotation_z(angle: f64) -> Self
pub fn from_rotation_z(angle: f64) -> Self
Creates an affine transformation matrix containing a 3D rotation around the z axis of
angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_scale(scale: DVec3) -> Self
pub fn from_scale(scale: DVec3) -> Self
Creates an affine transformation matrix containing the given 3D non-uniform scale
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
Panics
Will panic if all elements of scale
are zero when glam_assert
is enabled.
sourcepub const fn from_cols_slice(slice: &[f64]) -> Self
pub const fn from_cols_slice(slice: &[f64]) -> Self
Creates a 4x4 matrix from the first 16 values in slice
.
Panics
Panics if slice
is less than 16 elements long.
sourcepub fn write_cols_to_slice(self, slice: &mut [f64])
pub fn write_cols_to_slice(self, slice: &mut [f64])
Writes the columns of self
to the first 16 elements in slice
.
Panics
Panics if slice
is less than 16 elements long.
sourcepub fn col_mut(&mut self, index: usize) -> &mut DVec4
pub fn col_mut(&mut self, index: usize) -> &mut DVec4
Returns a mutable reference to the matrix column for the given index
.
Panics
Panics if index
is greater than 3.
sourcepub fn is_finite(&self) -> bool
pub fn is_finite(&self) -> bool
Returns true
if, and only if, all elements are finite.
If any element is either NaN
, positive or negative infinity, this will return false
.
sourcepub fn determinant(&self) -> f64
pub fn determinant(&self) -> f64
Returns the determinant of self
.
sourcepub fn inverse(&self) -> Self
pub fn inverse(&self) -> Self
Returns the inverse of self
.
If the matrix is not invertible the returned matrix will be invalid.
Panics
Will panic if the determinant of self
is zero when glam_assert
is enabled.
sourcepub fn look_to_lh(eye: DVec3, dir: DVec3, up: DVec3) -> Self
pub fn look_to_lh(eye: DVec3, dir: DVec3, up: DVec3) -> Self
Creates a left-handed view matrix using a camera position, an up direction, and a facing direction.
For a view coordinate system with +X=right
, +Y=up
and +Z=forward
.
sourcepub fn look_to_rh(eye: DVec3, dir: DVec3, up: DVec3) -> Self
pub fn look_to_rh(eye: DVec3, dir: DVec3, up: DVec3) -> Self
Creates a right-handed view matrix using a camera position, an up direction, and a facing direction.
For a view coordinate system with +X=right
, +Y=up
and +Z=back
.
sourcepub fn look_at_lh(eye: DVec3, center: DVec3, up: DVec3) -> Self
pub fn look_at_lh(eye: DVec3, center: DVec3, up: DVec3) -> Self
Creates a left-handed view matrix using a camera position, an up direction, and a focal
point.
For a view coordinate system with +X=right
, +Y=up
and +Z=forward
.
Panics
Will panic if up
is not normalized when glam_assert
is enabled.
sourcepub fn look_at_rh(eye: DVec3, center: DVec3, up: DVec3) -> Self
pub fn look_at_rh(eye: DVec3, center: DVec3, up: DVec3) -> Self
Creates a right-handed view matrix using a camera position, an up direction, and a focal
point.
For a view coordinate system with +X=right
, +Y=up
and +Z=back
.
Panics
Will panic if up
is not normalized when glam_assert
is enabled.
sourcepub fn perspective_rh_gl(
fov_y_radians: f64,
aspect_ratio: f64,
z_near: f64,
z_far: f64
) -> Self
pub fn perspective_rh_gl( fov_y_radians: f64, aspect_ratio: f64, z_near: f64, z_far: f64 ) -> Self
Creates a right-handed perspective projection matrix with [-1,1] depth range.
This is the same as the OpenGL gluPerspective
function.
See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml
sourcepub fn perspective_lh(
fov_y_radians: f64,
aspect_ratio: f64,
z_near: f64,
z_far: f64
) -> Self
pub fn perspective_lh( fov_y_radians: f64, aspect_ratio: f64, z_near: f64, z_far: f64 ) -> Self
Creates a left-handed perspective projection matrix with [0,1]
depth range.
Panics
Will panic if z_near
or z_far
are less than or equal to zero when glam_assert
is
enabled.
sourcepub fn perspective_rh(
fov_y_radians: f64,
aspect_ratio: f64,
z_near: f64,
z_far: f64
) -> Self
pub fn perspective_rh( fov_y_radians: f64, aspect_ratio: f64, z_near: f64, z_far: f64 ) -> Self
Creates a right-handed perspective projection matrix with [0,1]
depth range.
Panics
Will panic if z_near
or z_far
are less than or equal to zero when glam_assert
is
enabled.
sourcepub fn perspective_infinite_lh(
fov_y_radians: f64,
aspect_ratio: f64,
z_near: f64
) -> Self
pub fn perspective_infinite_lh( fov_y_radians: f64, aspect_ratio: f64, z_near: f64 ) -> Self
Creates an infinite left-handed perspective projection matrix with [0,1]
depth range.
Panics
Will panic if z_near
is less than or equal to zero when glam_assert
is enabled.
sourcepub fn perspective_infinite_reverse_lh(
fov_y_radians: f64,
aspect_ratio: f64,
z_near: f64
) -> Self
pub fn perspective_infinite_reverse_lh( fov_y_radians: f64, aspect_ratio: f64, z_near: f64 ) -> Self
Creates an infinite left-handed perspective projection matrix with [0,1]
depth range.
Panics
Will panic if z_near
is less than or equal to zero when glam_assert
is enabled.
sourcepub fn perspective_infinite_rh(
fov_y_radians: f64,
aspect_ratio: f64,
z_near: f64
) -> Self
pub fn perspective_infinite_rh( fov_y_radians: f64, aspect_ratio: f64, z_near: f64 ) -> Self
Creates an infinite right-handed perspective projection matrix with
[0,1]
depth range.
sourcepub fn perspective_infinite_reverse_rh(
fov_y_radians: f64,
aspect_ratio: f64,
z_near: f64
) -> Self
pub fn perspective_infinite_reverse_rh( fov_y_radians: f64, aspect_ratio: f64, z_near: f64 ) -> Self
Creates an infinite reverse right-handed perspective projection matrix
with [0,1]
depth range.
sourcepub fn orthographic_rh_gl(
left: f64,
right: f64,
bottom: f64,
top: f64,
near: f64,
far: f64
) -> Self
pub fn orthographic_rh_gl( left: f64, right: f64, bottom: f64, top: f64, near: f64, far: f64 ) -> Self
Creates a right-handed orthographic projection matrix with [-1,1]
depth
range. This is the same as the OpenGL glOrtho
function in OpenGL.
See
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml
sourcepub fn orthographic_lh(
left: f64,
right: f64,
bottom: f64,
top: f64,
near: f64,
far: f64
) -> Self
pub fn orthographic_lh( left: f64, right: f64, bottom: f64, top: f64, near: f64, far: f64 ) -> Self
Creates a left-handed orthographic projection matrix with [0,1]
depth range.
sourcepub fn orthographic_rh(
left: f64,
right: f64,
bottom: f64,
top: f64,
near: f64,
far: f64
) -> Self
pub fn orthographic_rh( left: f64, right: f64, bottom: f64, top: f64, near: f64, far: f64 ) -> Self
Creates a right-handed orthographic projection matrix with [0,1]
depth range.
sourcepub fn project_point3(&self, rhs: DVec3) -> DVec3
pub fn project_point3(&self, rhs: DVec3) -> DVec3
Transforms the given 3D vector as a point, applying perspective correction.
This is the equivalent of multiplying the 3D vector as a 4D vector where w
is 1.0
.
The perspective divide is performed meaning the resulting 3D vector is divided by w
.
This method assumes that self
contains a projective transform.
sourcepub fn transform_point3(&self, rhs: DVec3) -> DVec3
pub fn transform_point3(&self, rhs: DVec3) -> DVec3
Transforms the given 3D vector as a point.
This is the equivalent of multiplying the 3D vector as a 4D vector where w
is
1.0
.
This method assumes that self
contains a valid affine transform. It does not perform
a perspective divide, if self
contains a perspective transform, or if you are unsure,
the Self::project_point3()
method should be used instead.
Panics
Will panic if the 3rd row of self
is not (0, 0, 0, 1)
when glam_assert
is enabled.
sourcepub fn transform_vector3(&self, rhs: DVec3) -> DVec3
pub fn transform_vector3(&self, rhs: DVec3) -> DVec3
Transforms the give 3D vector as a direction.
This is the equivalent of multiplying the 3D vector as a 4D vector where w
is
0.0
.
This method assumes that self
contains a valid affine transform.
Panics
Will panic if the 3rd row of self
is not (0, 0, 0, 1)
when glam_assert
is enabled.
sourcepub fn mul_scalar(&self, rhs: f64) -> Self
pub fn mul_scalar(&self, rhs: f64) -> Self
Multiplies a 4x4 matrix by a scalar.
sourcepub fn div_scalar(&self, rhs: f64) -> Self
pub fn div_scalar(&self, rhs: f64) -> Self
Divides a 4x4 matrix by a scalar.
sourcepub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool
pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool
Returns true if the absolute difference of all elements between self
and rhs
is less than or equal to max_abs_diff
.
This can be used to compare if two matrices contain similar elements. It works best
when comparing with a known value. The max_abs_diff
that should be used used
depends on the values being compared against.
For more see comparing floating point numbers.
pub fn as_mat4(&self) -> Mat4
Trait Implementations§
source§impl AddAssign<DMat4> for DMat4
impl AddAssign<DMat4> for DMat4
source§fn add_assign(&mut self, rhs: Self)
fn add_assign(&mut self, rhs: Self)
+=
operation. Read moresource§impl DivAssign<f64> for DMat4
impl DivAssign<f64> for DMat4
source§fn div_assign(&mut self, rhs: f64)
fn div_assign(&mut self, rhs: f64)
/=
operation. Read moresource§impl MulAssign<DMat4> for DMat4
impl MulAssign<DMat4> for DMat4
source§fn mul_assign(&mut self, rhs: Self)
fn mul_assign(&mut self, rhs: Self)
*=
operation. Read moresource§impl MulAssign<f64> for DMat4
impl MulAssign<f64> for DMat4
source§fn mul_assign(&mut self, rhs: f64)
fn mul_assign(&mut self, rhs: f64)
*=
operation. Read moresource§impl SubAssign<DMat4> for DMat4
impl SubAssign<DMat4> for DMat4
source§fn sub_assign(&mut self, rhs: Self)
fn sub_assign(&mut self, rhs: Self)
-=
operation. Read more